DOI QR코드

DOI QR Code

FOX hunting system을 이용한 배추 기능유전자 탐색

Systematic approaches to identify functional genes using the FOX-hunting system in Chinese cabbage

  • Lee, In-Hoo (Department of Horticulture, Sunchon National University) ;
  • Jung, Yu-Jin (Department of Horticulture, Hankyong National University) ;
  • Park, Jong-In (Department of Horticulture, Sunchon National University) ;
  • Nou, Ill-Sup (Department of Horticulture, Sunchon National University) ;
  • Kang, Kwon-Kyoo (Department of Horticulture, Hankyong National University)
  • 투고 : 2010.04.12
  • 심사 : 2010.04.29
  • 발행 : 2010.06.30

초록

Full-length cDNAs are essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. To elucidate the functions of a large population of Chinese cabbage (Brassica rapa) genes and to search efficiently for agriculturally useful genes, we have been taking advantage of the full-length cDNA Over-eXpresser (FOX) gene hunting system. With oligo dT column it purify the each mRNA from the flower organs, leaf and stem tissue. And about 120,000 cDNAs from the library were transformed into $\lambda$-pFLCIII-F vector. Of which 115,000 cDNAs from the library were transformed into T-DNA binary vector, pBigs for transformation study. We used normalized full-length cDNA and introduced each cDNA into Arabidopsis by in planta transformation. Full-length Chinese cabbage cDNAs were expressed independently under the CaMV 35S promoter in Arabidopsis. Selfed seeds were harvested from transgenic Arabidopsis. We had selected 2,500 transgenic plants by hygromycin antibiotic tolerant test, and obtained a number of transgenic mutants. Each transgenic Arabidopsis was investigated in morphological changes, fertility and leaf colour. As a result, 285 possible morphological mutants were identified. Introduced cDNA was isolated by PCR amplification of the genomic DNA from the transgenic mutants. Sequencing result and BLAST analysis showed that most of the introduced cDNA were complete cDNAs and functional genes. Also, we examined the effect of Bromelain on enhancing resistance to soft rot in transgenic Chinese cabbage 'Osome'. The bromelain gene identified from FOX hunting system was transformed into Chinese cabbage using Agrobacterium methods. Transformants were screened by PCR, then RT-PCR and real time PCR were performed to analyze gene expression of cysteine protease in the T1 and T2 generations. The anti-bacterial activity of bromelain was tested in Chinese cabbages infected with soft rot bacteria. The results showed that the over-expressed bromelain gene from pineapple conferred enhanced resistance to soft rot in Chinese cabbage.

키워드

참고문헌

  1. An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Hur J, Kim SR, Kim YH, Lee M, Han S, Kim SJ, Yang J, Kim E, Wi SJ, Chung HS, Hong JP, Choe V, Lee HK, Choi JH, Nam J, Kim SR, Park PB, Park KY, Kim WT, Choe S, Lee CB, An G (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133: 2040-2047 https://doi.org/10.1104/pp.103.030478
  2. Chaudhury AM, Signer ER (1989) Non-destructive transformation of Arabidopsis. Plant Mol. Bio. Rep. 7:258-265 https://doi.org/10.1007/BF02668634
  3. Chen S, Jin W, Wang M., Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P (2003) Distribution and characterization of over 1,000 T-DNA tags in rice genome. Plant J. 36:105-113 https://doi.org/10.1046/j.1365-313X.2003.01860.x
  4. Engwerda CR, Andrew D, Ladhams A, Mynott TL (2001) Bromelain modulates T cell and B cell immune responses in vitor and in vivo. Cell Immunol. 25:66-75
  5. Fujita M, Saho M, Yasunari F, Takanari I, Miki N, Motoaki S, Minami M, Kazuko Y-S, Kazuo S (2007) Identification of stress-tolerance-related transcription-factor genes via mini-scale full-length cDNA over-expressor (FOX) gene hunting system. Bioche. Biophy. Res. Communi. 364:250-257 https://doi.org/10.1016/j.bbrc.2007.09.124
  6. Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomerica japonica male strobili. BMC Genomics 9:383 https://doi.org/10.1186/1471-2164-9-383
  7. Gaspani L, Limiroli E, Ferrario P, Bianchi M (2002) In vivo and in vitro effects of bromelain on PEG2 and SP concentrations in the inflammatory exudate in rats. Pharmacology 65:83-86 https://doi.org/10.1159/000056191
  8. Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY, Han C, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H (2004) Rice mutant resources for gene discovery. Plant Mol. Biol. 54:325-334 https://doi.org/10.1023/B:PLAN.0000036368.74758.66
  9. Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, Ishikawa A, Kobayashi H, Yoshizumi T, Tsumoto Y, Tsuhara Y, Iizumi H, Goto Y, Matsui M (2003) Sequence database of 1,172 T-DNA insertion sites in Arabidopsis activation tagging lines that showed phenotypes in T1 generation. Plant J. 36:421-429 https://doi.org/10.1046/j.1365-313X.2003.01876.x
  10. Ichikawa T, Nakazawa M, Kawashima M, Iizumi H, Kuroda H, Kondou Y, Tsuhara Y, Suzuki K, Ishikawa A, Seki M, Fujita M, Motohashi R, Nagata N, Takagi T, Shinozaki K, Matsui M (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J. 48:974-985 https://doi.org/10.1111/j.1365-313X.2006.02924.x
  11. Jeong DH, An SY, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An GH (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130:1636-1644 https://doi.org/10.1104/pp.014357
  12. Manhart N, Akomeah R, Bergmeister H, Spittler A, Ploner M, Roth E (2002) Administration of proteolytic enzymes bromelain and trypsin diminish the number of CD4+ cells and the interferon-gamma response in Peyer’s patches and spleen in endotoxemic balb/c mice. Cell Immunol. 215:113-119 https://doi.org/10.1016/S0008-8749(02)00019-9
  13. Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. Cell Mol. Life Sci. 58:1234-1245 https://doi.org/10.1007/PL00000936
  14. Meyerowitx EM and Pruitt RE (1985) Arabidopsis thaliana and Plant Molecular Genetics. Science 229:1214-1218 https://doi.org/10.1126/science.229.4719.1214
  15. Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K, Yatou O, Nagato Y, Hirochika H (2007) A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol. Biol. 63:625-635 https://doi.org/10.1007/s11103-006-9118-7
  16. Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771-1780 https://doi.org/10.1105/tpc.012559
  17. Mynott TL, Crossett B, Prathalingam SR (2002) Proteolytic inhibition of Salmonella enterica serovar typhimurium-induced activation of the mitogen-activated protein kinases ERK and JNK in cultured human intestinal cells. Infect Immun. 70:86-95 https://doi.org/10.1128/IAI.70.1.86-95.2002
  18. Nakamura H, Makoto H, Kou A, Akio M, Naoko T, Mariko K, Jinhuan P, Naokuni H, Shigeko A, Seiichi T, Miki F, Akiko E, Motoaki S, Miki N, Takanari I, Kazuo S, Minami M, Yoshiaki N, Hirohiko I (2007) A genome-wide gain-of-function analysis of rice genes using the FOX-hunting system. Plant Mol. Biol. 65:357-371 https://doi.org/10.1007/s11103-007-9243-y
  19. Nanjo, T., Sakurai, T., Totoki, Y., Toyoda, A., Nishiguchi, M., Kado, T. (2007) Functional annotation of 19,841 Populus nigra fulllength enriched cDNA clones. BMC Genomics 8:448 https://doi.org/10.1186/1471-2164-8-448
  20. Park SH, Jun NS, Kim CM, Oh TY, Huang J, Xuan YH, Park SJ, Je BI, Piao HL, Park SH, Cha YS, Ahn BO, Ji HS, Lee MC, Suh SC, Nam MH, Eun MY, Yi G, Yun DW, Han CD (2007) Analysis of gene-trap Ds rice populations in Korea. Plant Mol. Biol. 65:373-384 https://doi.org/10.1007/s11103-007-9192-5
  21. Patton DA, Meinke DW (1988) High-frequency plant regeneration from culture cotyledons of Arabidopsis thaliana. Plant Cell Rep. 7:233-237 https://doi.org/10.1007/BF00272531
  22. Pruitt RE, Meyerowitz EM (1986) Characterization of the genome of Arabidopsis thaliana. J. Mol. Biology 187:169-183 https://doi.org/10.1016/0022-2836(86)90226-3
  23. Ryu CH, You JH, Kang HG, Hur J, Kim YH, Han MJ, An K, Chung BC, Lee CH, An G (2004) Generation of T-DNA tagging lines using a bi-directional gene trap vector and the establishment of an insertion-site database. Plant Mol. Biol. 54:489-502 https://doi.org/10.1023/B:PLAN.0000038257.93381.05
  24. Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann JC, Delseny M, Guiderdoni E (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J. 39:450-464 https://doi.org/10.1111/j.1365-313X.2004.02145.x
  25. Seki M, Masakazu S, Tetsuya S, Kenji A, Kei I, Junko I, Maiko N, Akiko E, Mari N, Miki F, Youko O, Ayako K, Kazuko Y-S, Kazuo S (2004) RIKEN arabidopsis full-lenth (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. J. Experimental Botany 55:213-223
  26. Taji T, Sakurai T, Mochida K, Ishiwata A, Kurotani A, Totoki Y (2008) Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol. 8:115 https://doi.org/10.1186/1471-2229-8-115
  27. Takasaki T, Hatakeyama K, Ojima K, Watanabe M, Toriyama K, Hinata K (1997) Factors influencing Agrobacterium-mediated transformation of Brassica rapa L.. Breeding Science 47:127-134
  28. Umezawa T, Sakurai T, Totoki Y, Toyoda A, Seki M, Ishiwata A, Akiyama K, Kurotani A, Yoshida T, Mochida K, Kasuga M, Todaka D, Maruyama K, Nakashima K, Enju A, Mizukado S, Ahmed S, Yoshiwara K, Harada K, Tsubokura Y, Hayashi M, Sato S, Anai T, Ishimoto M, Funatsuki H, Teraishi M, Osaki M, Shinano1 T, Akashi R, Sakaki Y, Yamaguchi-Shinozaki K, Shinozaki K (2008) Sequencing and analysis of approximately 40,000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Res. 15:333-346 https://doi.org/10.1093/dnares/dsn024
  29. Upadhyaya NM, Zhou XR, Ramm K, Zhu QH, Wu L, Eamens AL, Sivakumar R, Kato T, Yun DW, Kumar S, Narayanan KK, Peacock WJ, Dennis ES (2002) An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct Plant Biol. 29:547-559 https://doi.org/10.1071/PP01205
  30. Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM et al. (2000) Activation Tagging in Arabidopsis. Plant Physiol 122: 1003-1013 https://doi.org/10.1104/pp.122.4.1003
  31. Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065-1075 https://doi.org/10.1007/s00425-009-0895-5
  32. Yokotani N, Tkaanari I, Youichi K, Minami M, Hirohiko H, Masaki I, Kenji O (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227:957-967 https://doi.org/10.1007/s00425-007-0670-4