DOI QR코드

DOI QR Code

Current status of Brassica rapa functional genome research in Korea

한국 배추 기능유전체 연구의 현황

  • Yu, Jae-Gyeong (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Ji-Hyun (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
  • 유재경 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박지현 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박영두 (경희대학교 생명과학대학 원예생명공학과)
  • Received : 2010.04.05
  • Accepted : 2010.04.12
  • Published : 2010.06.30

Abstract

The purpose of functional genome research is to identify biological function of useful gene and to give an agricultural value in plant biotechnology. Brassica rapa is an economic crop which recorded 1,000 billion won of domestic market and 100 million dollar of exports and it produces 2.5 million ton in 50,000 ha as a major ingredient of representative Korean food, Kimchi. Furthermore, it is very important crop economically and commercially because Korea is major seed exporter. The fact that Multinational Brassica Genome Project (MBGP) was launched and Arabidopsis thaliana, affiliated to same genus with B. rapa, has been fully sequenced activated functional genome research of B. rapa. Besides new technologies related to gene function analysis keep developing, many results are reporting every year by international research including Korea. This review paper introduces development of Chinese cabbage mutants which is a first step in functional genome research, variant phenotypes of mutants, flanking DNA analysis in B. rapa genome, gene identification, gene analysis using microarray, and representative researches.

식물생명공학 분야에 있어 기능유전체 연구는 식물체가 지니고 있는 유용한 유전자의 생물학적 기능을 밝히고, 농업적 유용성을 확보하여 가치를 부여하는 것을 목적으로 한다. 배추는 우리나라 대표 음식 중의 하나인 김치의 주원료이며 식품영양학적으로도 우수성이 인정되었고 약 5만 ha에서 연간 약 250만 톤이 생산되어 1조원의 국내 시장 및 1억 달러의 수출액을 기록하는 경제작물이다. 그리고 우리나라가 주요 종자수출국의 위치를 차지하고 있어 재배에 있어서나 경제적, 상업적으로 그 중요성이 매우 높은 작물이다. Multinational Brassica Genome Project (MBGP)가 시작되고 배추와 같은 속에 속하는 애기장대의 전 염기서열 분석이 완료됨으로써 배추의 기능유전체 연구가 더욱 활발해 질 수 있는 환경이 마련되었다. 또한 유전자 기능 분석 연구에 필요한 새로운 기술들이 계속 개발되고 있으며 우리나라를 선두로 하여 국제적으로도 연구가 이루어져 해마다 많은 성과들이 보고되고 있다. 본 총설에서는 기능유전체 연구의 첫 단계인 배추 돌연변이체 유기 방법을 시작으로 다양한 표현형의 돌연변이체를 소개하고 이 돌연변이 배추의 게놈내 flanking DNA 분석 및 유전자 동정, microarray를 이용한 유전자 분석, 대표적인 기능유전체 연구 사례를 제시하고자 하였다.

Keywords

References

  1. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by trasnfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci 74:5350-5354 https://doi.org/10.1073/pnas.74.12.5350
  2. Barrett JE, Klopfenstein CF, Leipold HW (1998) Protective effects of cruciferous and seed meals and hulls against colon cancer in mice. Cancer Lett 127:83-88 https://doi.org/10.1016/S0304-3835(98)00024-X
  3. Baurens FC, Causse S, Legavre T (2008) Methylation-sensitive amplification polymorphism (MSAP) protocol to assess CpG and CpNpG methylation in the banana genome. Fruits 63:117-123 https://doi.org/10.1051/fruits:2007054
  4. Bestor TH, Coxon A (1993) The pros and cons of DNA methylation. Curr Biol 3:384-386 https://doi.org/10.1016/0960-9822(93)90209-7
  5. Cedar H (1988) DNA methylation and gene activity. Cell 53: 3-4 https://doi.org/10.1016/0092-8674(88)90479-5
  6. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377-406 https://doi.org/10.1146/annurev.arplant.58.032806.103835
  7. Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-adenosylmethionine and methylation. FASEB J 10:471-480 https://doi.org/10.1096/fasebj.10.4.8647346
  8. Choi SR, Park JY, Park BS, Kim HI, Lim YP (2006) Korea Brassica Genome Project: Current Status and Prospective. J Plant Biotechnol 33:153-160 https://doi.org/10.5010/JPB.2006.33.3.153
  9. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462-469 https://doi.org/10.1104/pp.103.027979
  10. Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprous: an exceptionally rich source of inducers of enzymes that proect against chemical carcinogens. Proc Natl Acad Sci 94:10367-10372 https://doi.org/10.1073/pnas.94.19.10367
  11. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391:806-11 https://doi.org/10.1038/35888
  12. Ge H, Walhout AJ, Vidal M (2003) Integrating 'omic' information: a bridge between genomics and systems biology. Trends Genet 19:551-560 https://doi.org/10.1016/j.tig.2003.08.009
  13. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92-100 https://doi.org/10.1126/science.1068275
  14. Gottlieb LD (2003) Plant polyploidy: gene expression and genetic redundancy. Heredity 91:91–92
  15. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303-333 https://doi.org/10.1146/annurev.arplant.57.032905.105228
  16. Holtorf H, Guitton MC, Reski R (2002) Plant functional genomics. Naturwissenschaften 89:235-249 https://doi.org/10.1007/s00114-002-0321-3
  17. Hyun JY, Gothandam KM, Baek NK, Wang G, Chung YY (2007) Dominance Relationship between Two Self-Incompatible Brassica campestris Haplotypes in Response to $CO_2$ Gas. J Plant Biol 50:161-166 https://doi.org/10.1007/BF03030625
  18. Jaligot E, BeuléT, Baurens FC, Billotte N, Rival A (2004) Search for methylation-sensitive amplification polymorphisms associated with the "mantled" variant phenotype in oil palm (Elaeis guineensis Jacq.). Genome 47:224–228
  19. Jeong YS, Lim YP, Hur YK, Chung SM (2009) Development of DNA markers for trehalose synthesis genes in Brassica rapa L. J Life Sci 19:639-643 https://doi.org/10.5352/JLS.2009.19.5.639
  20. Kim HS, Kim SH, Park YD (2003) Development of rescue cloning vector with phosphinothricin resistant gene for effective T-DNA tagging. J Kor Soc Hort Sci 44:407-411
  21. Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS (2006a) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29-39 https://doi.org/10.1534/genetics.106.060152
  22. Kim SY, Park BS, Kwon SJ, Kim JS, Lim MH, Park YD, Kim DY, Suh SC, Jin YM, Ahn JH, Lee YH (2006b) Delayed flowering time in Arabidopsis and Brassica rapaby the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant cell Rep 26:327-336 https://doi.org/10.1007/s00299-006-0243-1
  23. Lagerctantz U, Lydiate D (1996) Comparative genome mapping in brassica. Genetics 144:1903-1910
  24. Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospeciWer protein promotes the hydrolysis of glucosinolates to nitriles and in-Xuences Trichoplusia ni herbivory. Plant Cell 13:2793-2807 https://doi.org/10.1105/tpc.13.12.2793
  25. Lee JY, Han CT, Hur YK (2010) Overexpression of BrMORN, a novel 'membrane occupation and recognition nexus' motif protein gene from Chinese cabbage, promotes vegetative growth and seed production in Arabidopsis. Mol Cells 29:113-22 https://doi.org/10.1007/s10059-010-0006-2
  26. Lee MK, Kim HS, Kim JS, Kim SH, Park YD (2004) Agrobacterium-mediated transformation system for large-scale production of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J Plant Biol 47:300-306 https://doi.org/10.1007/BF03030544
  27. Lennon GG, Lehrach H (1991) Hybridization analyses of arrayed cDNA libraries. Trends Genet 7:314-317 https://doi.org/10.1016/0168-9525(91)90420-U
  28. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science257:967-971 https://doi.org/10.1126/science.1354393
  29. Lim KB, De Jong H, Yang TJ, Park JY, Kwon SJ (2005) Characterization of rDNAs and tandem repeats in heterochromatin of Brassica rapa. Mol Cells 19:436-444
  30. Lim KB, Yang TJ, Hwang YJ, Kim JS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173-183 https://doi.org/10.1111/j.1365-313X.2006.02952.x
  31. Mark C, Ueli G (2003) A Gateway cloning vector set for highthroughput functional analysis of genes in planta. Plant Physiol 133:462-469 https://doi.org/10.1104/pp.103.027979
  32. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus35S promoter. Nature 313:810-812 https://doi.org/10.1038/313810a0
  33. Oh YJ, Chung H, Yu JG, Park YD (2009) Newly developed MSAP analysis reveals the different polymorphism patterns in transgenic tobacco plants with the dsRNA MET1 gene. Plant Biotechnol Rep 3:139-145 https://doi.org/10.1007/s11816-009-0083-x
  34. Park YD, Yoon HS (2007) The role of a floral identity gene LFY in plant morphological evolution. Kor J Plant Tax 37:323-333 https://doi.org/10.11110/kjpt.2007.37.4.323
  35. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815 https://doi.org/10.1038/35048692
  36. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484-487 https://doi.org/10.1126/science.270.5235.484
  37. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581-90 https://doi.org/10.1046/j.1365-313X.2001.01105.x
  38. Yu JG, Lee GH, Kim JS, Shim EJ, Park YD (2010) An Insertional Mutagenesis System for Analyzing the Chinese Cabbage Genome Using Agrobacterium T-DNA. Mol. Cells29:267-275 https://doi.org/10.1007/s10059-010-0013-3
  39. Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus epithiospecifer modifer 1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524-1536 https://doi.org/10.1105/tpc.105.039602

Cited by

  1. Development of salt-tolerant transgenic chrysanthemum (Dendranthema grandiflorum) lines and bio-assay with a change of cell specificity vol.38, pp.1, 2011, https://doi.org/10.5010/JPB.2011.38.1.001
  2. Analysis of right border flanking sequence in transgenic chinese cabbage harboring integrated T-DNA vol.38, pp.1, 2011, https://doi.org/10.5010/JPB.2011.38.1.015