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CONTINUOUS CHARACTERIZATION
OF THE TRIEBEL-LIZORKIN SPACES

AND FOURIER MULTIPLIERS

Yong-Kum Cho

Abstract. We give a set of continuous characterizations for the homoge-
neous Triebel-Lizorkin spaces and use them to study boundedness proper-
ties of Fourier multiplier operators whose symbols satisfy a generalization
of Hörmander’s condition. As an application, we give new direct proofs
of the imbedding theorems of the Sobolev type.

1. Introduction

In the present article we aim at establishing a set of new characterizations
for the homogeneous Triebel-Lizorkin spaces on Rn and studying a class of
Fourier multipliers by making use of our characterizations.

For a systematic approach, let A denote the class of Schwartz function ϕ
on Rn such that its Fourier transform ϕ̂ has support in {1/2 ≤ |ξ| ≤ 2} and
|ϕ̂(ξ)| ≥ c > 0 for 3/5 ≤ |ξ| ≤ 5/3. Given a triple of parameters α ∈ R and
0 < p < ∞, 0 < r ≤ ∞, we recall ([14], [18]) that a tempered distribution f

belongs to the homogeneous Triebel-Lizorkin space Ḟα
p, r, modulo polynomials,

if the quasi-norm

(1.1) ‖f‖Ḟ α
p, r

=
∥∥∥∥
(∑

j∈Z

(
2jα |f ∗ ϕ2−j |)r

)1/r∥∥∥∥
Lp

is finite, where ϕ ∈ A and ϕ2−j (x) = 2jnϕ(2jx), with the usual interpretation
for r = ∞ . An extension to the case p = ∞ reads as

(1.2) ‖f‖Ḟ α∞, r
= sup

Q

(
1
|Q|

∫

Q

∑

2−j≤l(Q)

(
2jα |f ∗ ϕ2−j (x)|)r

dx

)1/r

,
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where the supremum is taken over all dyadic cubes Q (see [9]). A different
choice of ϕ in both definitions yields equivalent quasi-norms as long as it is
taken from the class A.

In contrast to these discrete definitions involving sums, there are continu-
ous counterparts involving integrals. As an example, it is shown by H. Bui,
M. Paluszyński, and M. Taibleson ([1]) that

(1.3) ‖f‖Ḟ α
p, r

≈ 1

∥∥∥∥
(∫ ∞

0

(
t−α |f ∗ ϕt|

)r dt

t

)1/r∥∥∥∥
Lp

for the same range of parameters as in the definition (1.1), where ϕ ∈ A and
ϕt(x) = t−nϕ(x/t) for each t > 0. An inspection shows that the characterizing
means defined on the right side of (1.3) are nothing but simple variants of the
classical Littlewood-Paley g-functions which arise in the theory of Hp spaces,
the real-variable Hardy spaces on Rn. In fact, setting v(x, t) = t−α(f ∗ϕt)(x),
we have

(1.4)
(∫ ∞

0

(
t−α |f ∗ ϕt(x)|

)r dt

t

)1/r

=
[
g

(
vr/2

)
(x)

]2/r

,

where g denotes the Littlewood-Paley operator

g(u)(x) =
(∫ ∞

0

|u(x, t)|2 dt
t

)1/2

defined for each continuous function u(x, t) on Rn+1
+ ([15], [11]).

In the light of this motivational example and observation, we shall charac-
terize Triebel-Lizorkin spaces in terms of variants of the characterizing means
for Hp or BMO spaces. As we shall describe the details in Section 3, those
variants in question will be obtained from the Littlewood-Paley gλ-functions,
Lusin S-functions and certain kinds of maximal functions by applying the same
rule explained as in (1.4).

In dealing with Triebel-Lizorkin spaces, it is important to understand the
basic structure determined by the values of parameters. In the first place, for
fixed p, r, the spaces Ḟα

p, r with parameters α ∈ R can be viewed as a scale
of potential spaces in the following sense. Let Iα denote the Riesz potentials
defined by

(1.5) (Iαf )̂ (ξ) = |ξ|−α f̂(ξ)

with the agreement that I0 corresponds to the identity. It is plain to observe
that Ḟα

p, r = Iα(Ḟ 0
p, r), the image spaces of Ḟ 0

p, r under the transformations Iα.
With the aid of certain singular integrals, it is in fact possible to identify each
Ḟα

p, r as the Ḟ 0
p, r-Sobolev space of order α when α > 0. While these facts are

more or less known, we shall give a precise description in the next section.

1This notation will mean the quasi-norm equivalence throughtout this paper
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On the other hand, regarding the roles of parameters p, r, we have

(1.6) Ḟ 0
p, 2 = Hp (0 < p <∞), Ḟ 0

∞, 2 = BMO.

In view of the monotone imbedding2 property

(1.7) Ḟα
p, r1

↪→ Ḟα
p, r2

, 0 < r1 ≤ r2 ≤ ∞,

hence, we may interpret that the Ḟ 0
p, r are monotone family of refinements when

0 < r < 2 or extensions when 2 < r ≤ ∞ of Hp and BMO spaces.
From this structure point of view, it is evident that the homogeneous Triebel-

Lizorkin spaces provide an ideal framework for developing an extensive Sobolev
theory. As a matter of fact, many authors have studied the problems of Sobolev-
type inequalities, traces, pointwise multipliers, restrictions or extensions related
with Lipschitz-type domains, and the like on these function spaces.

At present we are interested in studying Fourier multipliers whose symbols
satisfy a generalization of Hörmander’s condition. To be specific, we shall
consider a family of Fourier multiplier operator Tm, defined as (Tmf )̂ = mf̂,
with the following condition on m.

Given a positive integer ` and α ∈ R, m ∈ C` (Rn \ {0}) and

(1.8) sup
R>0

[
R−n+2α+2|σ|

∫

R<|ξ|<2R

∣∣∂σ
ξ m(ξ)

∣∣2dξ
]
≤ Aσ, |σ| ≤ `.

When α = 0, it is known as the Hörmander condition (see [11], [15]). Typical
examples are given by the symbols of singular integrals Rj which will be defined
in the next section. When α 6= 0, a typical example is given by m(ξ) = |ξ|−α

of Iα which satisfies the condition (1.8) for every positive integer `. Another
example is the symbol of a differential operator ∂σ of order |σ| = α when
α > 0.

It turns out that our characterizing means are effective in investigating map-
ping properties of Tm on the homogeneous Triebel-Lizorkin spaces. As a partic-
ular instance of our results, we shall obtain the Sobolev imbedding theorems in
the full range. While we put our emphasis on the homogeneous Tribel-Lizorkin
spaces, we shall also obtain mapping properties of Tm on the homogeneous
Besov-Lipschitz spaces by a slight modification of our methods.

In what follows, the letter C will denote a positive constant which may differ
in each occurrence and may depend on the parameters but not on the variable
quantities involved. As usual, the Fourier transform of an integrable function
φ on Rn will be defined as

φ̂(ξ) =
∫

Rn

e−iξ·x φ(x) dx, ξ ∈ Rn.

2Given two quasi-norm spaces A, B, the notation A ↪→ B will mean the continuous
imbedding of A into B, that is, A ⊂ B and ‖ · ‖B ≤ c ‖ · ‖A for a uniform constant c.
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2. A basic structure of Triebel-Lizorkin spaces

In general, given a quasi-norm space (B, ‖ · ‖B) of tempered distributions,
the image spaces Iα(B) are said to be the homogeneous B-Sobolev spaces
provided the following conditions hold:

(i) For a positive integer `, f ∈ I`(B) if and only if ∂σf ∈ B for all σ of
order |σ| = ` and

‖f‖I`(B) ≈
∑

|σ|=`

‖∂σf‖B .

(ii) For a non-integral value of α, Iα(B) can be identified as an interpolation
space between two neighboring spaces of integral order.

As for the spaces Ḟα
p, r, we state the following elementary facts which must

be well known. We shall write Ḟ 0
p, r = Fp, r for simplicity.

Proposition 2.1. Let 0 < p, r ≤ ∞.

(1) For α ∈ R, Ḟα
p, r = Iα

(
Fp, r

)
so that f ∈ Ḟα

p, r if and only if there
exists a unique g ∈ Fp, r such that

f = Iα(g) and ‖f‖Ḟ α
p, r

≈ ‖g‖Fp, r .

(2) For a positive integer `, f ∈ Ḟ `
p, r if and only if ∂σf ∈ Fp, r for all σ

of order |σ| = ` and

‖f‖Ḟ `
p, r

≈
∑

|σ|=`

‖∂σf‖Fp, r
.

Proof. Clearly Iα preserves the class A. In view of the identities

Iα(f) ∗ ϕ2−j = 2−jα [f ∗ (Iαϕ)2−j ] , j ∈ Z,
it maps Fp, r boundedly into Ḟα

p, r. Since its inverse is given by I−α, the trans-
formation Iα : Fp, r → Ḟα

p, r is indeed an isometric isomorphism up to equiv-
alence of quasi-norms. This proves the statement (1).

As for (2), we consider Riesz singular integrals (Rj) defined as

(2.1) (Rjf) (̂ξ) = −i ξj|ξ| f̂(ξ), j = 1, . . . , n.

By the same reasoning as above, each Rj is easily seen to be a bounded mapping
from Fp, r into itself. Put

R = (R1, . . . , Rn), ∇ = (∂1, . . . , ∂n).

A simple manipulation of symbols shows that for each |σ| = `,

∂σ = (−1)`Rσ I−`, I−` = (∇ ·R)`,

which yields the assertion (2). ¤
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According to H. Triebel [18], M. Frazier and B. Jawerth [9], for any real
numbers α < γ, if β = (1−θ)α+θγ for 0 < θ < 1, then Ḟ β

p, r can be identified
as the interpolation space

(
Ḟα

p, r, Ḟ
γ
p, r

)
θ

= Ḟ β
p, r.

It follows that we may interpret the spaces Ḟα
p, r as the homogeneous Fp, r-

Sobolev spaces in the sense described as above. This important point of view
on Triebel-Lizorkin spaces may be justified from the fact

(2.2) Ḟα
p, 2 = Ḣp

α (0 < p <∞), Ḟα
∞, 2 = Iα(BMO),

which have been investigated by R. Strichartz (see [16], [17] and also [7]).

Remark 2.1. In a similar manner, the inhomogeneous B-Sobolev spaces can be
defined in general as the image spaces Jα(B), where the Jα denote the Bessel
potentials defined as

(2.3) (Jαf) (̂ξ) =
(
1 + |ξ|2)−α/2

f̂(ξ)

(see A. P. Calderón [4]). With B = Fp, r, however, the spaces Jα(Fp, r) do not
coincide with the inhomogeneous Triebel-Lizorkin spaces Fα

p, r when 0 < p ≤ 1.
In particular, the inhomogeneous Hardy-Sobolev spaces Jα(Fp, 2) = Hp

α are not
part of scales of Triebel-Lizorkin spaces when 0 < p ≤ 1. Indeed, it is known
that Fα

p, 2 = hp
α, where the hp stand for the local Hardy spaces.

3. New characterizations

The purpose of this section is to obtain a set of new characterizations for
the homogeneous Triebel-Lizorkin spaces. Based on the work ([1], [2], [3]) of
H. Bui, M. Paluszyński and M. Taibleson, our characterizing means are defined
in terms of integrals rather than sums.

In accordance with [1], given α ∈ R, we denote by Oα the class of Schwartz
function ϕ on Rn such that

(i) supt>0 |ϕ̂(tξ)| > 0 for each ξ 6= 0 and
(ii) (∂σϕ̂) (0) = 0 for all |σ| ≤ [α] when α ≥ 0.

Evidently, A ⊂ Oα for any α. Each Oα will serve as a minimal admissible
class of Schwartz functions in characterizing Ḟα

p, r.
Often referred to as the Tauberian condition, the main reason of considering

the condition (i) lies in the following ([6], [5]).

Lemma 3.1 (Calderon’s reproducing formula). A Schwartz function ϕ satisfies
the condition (i) if and only if there exists a Schwartz function ζ such that ζ̂
has compact support away from the origin and

∫ ∞

0

ϕ̂(sξ) ζ̂(sξ)
ds

s
= 1 (ξ 6= 0).
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On the other hand, as it is shown in [1], the moment vanishing condition (ii)
turns out to be a minimal requirement in passing from one choice of Schwartz
functions to another for the proofs of equivalence properties of characterization.

3.1. Basic characterizing means

In principle all of our characterizing means are simple variants of those that
arise in characterization of Hp or BMO spaces. Following A. P. Calderón and
A. Torchinsky [5], C. Fefferman and E. M. Stein [8], we recall:

Definition 3.1. Given a continuous function u(x, t) on Rn+1
+ and real numbers

b > 0, λ > 0, we define six types of functions associated with u(x, t) as follows.
(1) The Littlewood-Paley g-function

g(u)(x) =
(∫ ∞

0

|u(x, t)|2 dt
t

)1/2

.

(2) The Littlewood-Paley gλ-function

Gλ(u)(x) =

[∫

Rn+1
+

|u(y, t)|2
(

1 +
|y − x|
t

)−2λ

t−n dy
dt

t

]1/2

.

(3) The Lusin S-function or area integral

Sb(u)(x) =

(∫

Γb(x)

|u(y, t)|2(bt)−ndy
dt

t

)1/2

,

where Γb(x) denotes the cone { (y, t) : |y − x| < bt }.
(4) The maximal function

M+(u)(x) = sup
t>0

|u(x, t)|.

(5) The non-tangential maximal function

Mb(u)(x) = sup
Γb(x)

|u(y, t)|.

(6) The Carleson maximal function

N (u)(x) = sup
t>0

[
1

|B(x, t)|
∫

B(x,t)

∫ t

0

|u(y, s)|2 ds
s
dy

]1/2

.

There is an additional maximal function which will be useful later on.

Definition 3.2. Given a continuous function u(x, t) on Rn+1
+ and λ > 0, the

Peetre maximal function associated with u(x, t) is defined as

u∗λ(x, t) = sup
y∈Rn

|u(y, t)|
(

1 +
|y − x|
t

)−λ

.
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3.2. The case 0 < p < ∞, 0 < r < ∞
In this case we characterize the space Ḟα

p, r by means of variants of Littlewood-
Paley functions (1), (2) and Lusin S-functions (3) given as in Definition 3.1.
As a general rule, our variants in question are obtained from replacing u(x, t)
by [t−αu(x, t)]r/2 and then taking 2/r power.

Definition 3.3. Let u(x, t) be a continuous function on Rn+1
+ . Given α ∈ R

and 0 < r <∞, we define

gα
r (u)(x) =

(∫ ∞

0

(
t−α|u(x, t)|)r dt

t

)1/r

,

Gα
λ, r(u)(x) =

[∫

Rn+1
+

(
t−α|u(y, t)|)r

(
1 +

|y − x|
t

)−λr

t−n dy
dt

t

]1/r

,

Sα
b, r(u)(x) =

(∫

Γb(x)

(
t−α|u(y, t)|)r (bt)−ndy

dt

t

)1/r

.

In practice we associate these functions with a tempered distribution f and
a Schwartz function ϕ on Rn through the specific function

u(x, t) = (f ∗ ϕt)(x), x ∈ Rn, t > 0.

A characterization of Triebel-Lizorkin spaces is established by H. Bui, M.
Paluszyński, and M. Taibleson in terms of the functions gα

r (f ∗ ϕt) .

Theorem 3.1 ([1], [2]). Let α ∈ R and 0 < p, r < ∞. For a tempered
distribution f on Rn and ϕ ∈ Oα, put u(x, t) = (f ∗ ϕt)(x). Then f ∈ Ḟα

p, r if
and only if gα

r (u) ∈ Lp or gα
r (u∗λ) ∈ Lp and

(3.1) ‖f‖Ḟ α
p, r

≈ ‖gα
r (u)‖p ≈ ‖gα

r (u∗λ)‖p ,

where the second equivalence holds for λ > max (n/p, n/r). A different choice
of ϕ from the class Oα yields equivalent quasi-norms in (3.1).

Our aim is to characterize Ḟα
p, r in terms of Sα

b, r and Gα
λ, r. It will be a simple

consequence of the following general properties.

Lemma 3.2. Let u(x, t) be continuous on Rn+1
+ , α ∈ R and 0 < r <∞.

(1) For any b, d > 0, if Sα
d, r(u) ∈ Lp , then Sα

b, r(u) ∈ Lp with

∥∥Sα
b, r(u)

∥∥
p
≤ Cn,p





(1 + b/d)n(1/p−1/r)
∥∥Sα

d, r(u)
∥∥

p
(0 < p ≤ r),

(1 + d/b)n/2
∥∥Sα

d, r(u)
∥∥

p
(r < p <∞).

(2) For any λ > 0, with ωn = |B(0, 1)|,
Sα

1, r(u)(x) ≤
(
2λ ω1/r

n

)
gα

r (u∗λ) (x) and
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gα
r (u)(x) ≤

(
1
ωn

)1/r

lim inf
b→ 0

[
Sα

b, r(u)(x)
]
.

(3) For any b > 0 and 0 < p <∞, if λ > max (n/p, n/r) , then∥∥Sα
b, r(u)

∥∥
p
≈

∥∥Gα
λ, r(u)

∥∥
p
.

Proof. Upon exploiting the relation

Sα
b, r(u)(x) =

[
Sb(vr/2)(x)

]2/r

with v(x, t) = t−αu(x, t),

the property (1) follows from Theorem 3.4 of [5].
By definition, the first inequality of (2) is a consequence of the estimate

|u(y, t)| ≤ 2λ u∗λ(x, t) for |y − x| < t.

As t−αu(x, t) is continuous in t > 0, we have
(
t−α|u(x, t)|)r = lim

b→ 0

1
|B(x, bt)|

∫

B(x, bt)

(
t−α|u(y, t)|)r

dy.

It follows from Fatou’s lemma that
[
gα

r (u)(x)
]r =

1
ωn

∫ ∞

0

[
lim
b→ 0

∫

B(x, bt)

(t−α|u(y, t)|)r (bt)−n dy

]
dt

t

≤ 1
ωn

lim inf
b→ 0

∫ ∞

0

∫

B(x, bt)

(t−α|u(y, t)|)r (bt)−n dy
dt

t

=
1
ωn

lim inf
b→ 0

[
Sα

b, r(u)(x)
]r
,

which proves the second inequality of (2) (see Theorem 6.8 of [5]).
Finally, the equivalence (3) can be proved directly by a minor modification

of the proof of Theorem 3.5, [5]. ¤
Our main characterization result is the following.

Theorem 3.2. Let α ∈ R and 0 < p, r < ∞. For a tempered distribution f
on Rn and ϕ ∈ Oα, put u(x, t) = (f ∗ ϕt)(x). Then f ∈ Ḟα

p, r if and only if
Sα

b, r(u) ∈ Lp for any b > 0 and

(3.2) ‖f‖Ḟ α
p, r

≈
∥∥Sα

b, r(u)
∥∥

p
.

A different choice of ϕ from Oα or b > 0 yields equivalent quasi-norms in
(3.2). Moreover, the same conclusion holds if we replace Sα

b, r(u) by Gα
λ, r(u)

with λ > max (n/p, n/r).

Proof. In view of (1) of Lemma 3.2, it suffices to deal with the case b = 1. The
properties (1), (2) of Lemma 3.2 show that

‖gα
r (u)‖p ≤ C

∥∥Sα
1, r(u)

∥∥
p
≤ C ‖gα

r (u∗λ)‖p

from which we get (3.2) in view of Theorem 3.1. The statement about Gα
λ, r

results from the property (3) of Lemma 3.2. ¤
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3.3. The case 0 < p ≤ ∞, r = ∞
In this case we characterize the space Ḟα

p,∞ by means of variants of maximal
functions (4), (5) of Definition 3.1 which are obtained from replacing u(x, t) by
t−αu(x, t).

Definition 3.4. Let u(x, t) be a continuous function on Rn+1
+ . Given α ∈ R

and b > 0, we define

Mα
+(u)(x) = sup

t>0
t−α |u(x, t)|, Mα

b (u)(x) = sup
Γb(x)

t−α |u(y, t)|.

As before, we associate these functions with a tempered distribution f and
a Schwartz function ϕ on Rn through u(x, t) = (f ∗ϕt)(x). It is shown ([1], [2],
[3]) that for any choice ϕ ∈ Oα,

(3.3) ‖f‖Ḟ α
p,∞

≈ ∥∥Mα
+(u)

∥∥
p
≈ ∥∥Mα

+(u∗λ)
∥∥

p
,

where the last equivalence holds for λ > n/p.

Theorem 3.3. Let α ∈ R and 0 < p ≤ ∞. For a tempered distribution f
on Rn and ϕ ∈ Oα, put u(x, t) = (f ∗ ϕt)(x). Then f ∈ Ḟα

p,∞ if and only if
Mα

b (u) ∈ Lp for any b > 0 and

(3.4) ‖f‖Ḟ α
p,∞

≈ ‖Mα
b (u)‖p .

A different choice of ϕ from Oα or b > 0 yields equivalent quasi-norms.

Proof. In view of the relation

Mα
b (u)(x) = Mb

(
t−αu

)
(x),

Theorem 2.3 of [5] shows that

(3.5) ‖Mα
b (u)‖p ≤ Cn,p

(
1 +

b

d

)n/p

‖Mα
d (u)‖p , b ≥ d > 0.

Writing the maximal function Mα
+(u∗λ)(x) in full, we have

Mα
+(u∗λ)(x) = sup

t>0, y∈Rn

(
t−α|u(y, t)|)

(
1 +

|y − x|
t

)−λ

= Nλ(t−αu)(x),

where Nλ corresponds to the maximal function considered in [5]. It follows
from Theorem 2.4 of [5] that

(3.6) ‖Mα
b (u)‖p ≈

∥∥Mα
+(u∗λ)

∥∥
p
, λ > n/p.

Owing to the known result (3.3), the desired properties are simple consequence
of the estimates (3.5), (3.6). ¤
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3.4. The case p = ∞, 0 < r < ∞
In this case we do not give a new characterization of Ḟα

∞, r but we just
recall the work of H. Bui and M. Taibleson. They considered variants of Car-
leson maximal functions (6) of Definition 3.1 obtained from replacing u(x, t)
by t−αu(x, t).

Definition 3.5. Let u(x, t) be a continuous function on Rn+1
+ . Given α ∈ R

and 0 < r <∞, we define

Nα
r (u)(x) = sup

t>0

[
1

|B(x, t)|
∫

B(x,t)

∫ t

0

(
s−α|u(y, s)|)r ds

s
dy

]1/r

.

Theorem 3.4 ([3]). Let α ∈ R and 0 < r < ∞. For a tempered distribution
f on Rn and ϕ ∈ Oα, put u(x, t) = (f ∗ϕt)(x). Then f ∈ Ḟα

∞, r if and only if
Nα

r (u) ∈ L∞ or Nα
r (u∗λ) ∈ Lp and

(3.7) ‖f‖Ḟ α∞, r
≈ ‖Nα

r (u)‖∞ ≈ ‖Nα
r (u∗λ)‖∞ ,

where the second equivalence holds for a sufficiently large λ (as large as stated
in p. 544, [3]). A different choice of ϕ from Oα yields equivalent quasi-norms
in (3.7).

4. Basic estimates

Making use of our characterizations, we now proceed to investigate the map-
ping properties of Tm under the assumption (1.8) on m. In this section we set
up a few basic estimates that will be useful later on. Let K denote the distri-
bution whose Fourier transform is m.

Lemma 4.1. Let ψ, ζ be Schwartz functions on Rn such that ψ̂, ζ̂ have com-
pact support away from the origin. Assume that m satisfies (1.8).

(1) If λ > 0 and ` > λ+ n/2, then for t > 0,
∫

Rn

(
1 +

|z|
t

)λ

|(K ∗ ψt)(z)| dz ≤ C tα.

(2) If ` ≥ λ > 0, then for s, t > 0,
∫

Rn

(
1 +

|z|
s

)2λ

|(K ∗ ζs ∗ ψt)(z)|2 dz

≤ Ck,N s−n+2α

(
t

s

)2k (
1 +

t

s

)−2N

for any pair of positive integers k,N.
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Proof. Dilating the functions ψ̂, ζ̂ appropriately, we may assume both have
support in {1/2 ≤ |ξ| ≤ 2}. To prove (1), we choose µ so that µ > n/2 and
λ+ µ ≤ `. By the Cauchy-Schwartz inequality,

[∫

Rn

(
1 +

|z|
t

)λ

|(K ∗ ψt)(z)| dz
]2

≤
∫

Rn

(
1 +

|z|
t

)−2µ

dz

∫

Rn

(
1 +

|z|
t

)2(λ+µ)

|(K ∗ ψt)(z)|2 dz

≤ C tn
∫

Rn

(
1 +

|z|
t

)2`

|(K ∗ ψt)(z)|2 dz

= C t2n

∫

Rn

(1 + |z|)2` |(K ∗ ψt)(tz)|2 dz.(4.1)

Applying the binomial theorem and the Plancherel theorem, the integral in
(4.1) is easily seen to be bounded by

t−2n
∑

|σ|≤`

Cσ

∫

Rn

∣∣∣∣∂σ
ξ

[
m

(
ξ

t

)
ψ̂(ξ)

]∣∣∣∣
2

dξ

≤ C t−2n
∑

|σ|≤`

tn−2|σ|
∫

1/t≤|ξ|≤2/t

∣∣(∂σ
ξ m

)
(ξ)

∣∣2 dξ

≤ C t−2n+2α,

where the last inequality is due to the hypothesis (1.8) on m. Inserting this
estimate into (4.1), we obtain the desired estimate of (1).

To prove (2), we change variables z 7→ sz and apply the Plancherel theorem
to observe

∫

Rn

(
1 +

|z|
s

)2λ

|(K ∗ ζs ∗ ψt)(z)|2 dz

≤ C s−n
∑

|σ|≤`

∫

Rn

∣∣∣∣∂σ
ξ

[
m

(
ξ

s

)
ψ̂

(
tξ

s

)
ζ̂(ξ)

]∣∣∣∣
2

dξ.(4.2)

By Leibniz’s rule, the last integral in (4.2) is bounded by

∑

|σ|≤`

∑
σ1+σ2+σ3=σ

σ!
σ1!σ2!σ3!

s−2|σ1|
(
t

s

)2|σ2|

×
∫

Rn

∣∣∣∣
(
∂σ1

ξ m
) (

ξ

s

) (
∂σ2

ξ ψ̂
) (

tξ

s

) (
∂σ3

ξ ζ̂
)

(ξ)
∣∣∣∣
2

dξ

≤ C

(
t

s

)2k (
1 +

t

s

)−2N ∑

|σ1|≤`

sn−2|σ1|
∫

1/s≤|ξ|≤2/s

∣∣∣
(
∂σ1

ξ m
)

(ξ)
∣∣∣
2

dξ
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≤ C s2α

(
t

s

)2k (
1 +

t

s

)−2N

,

where we have used the fact that ψ̂ has a zero of infinite order at the origin
and the hypothesis (1.8) on m. Inserting this estimate into (4.2), we obtain
the stated estimate of (2). ¤

We now deduce the following which will play crucial roles in our subsequent
development. For simplicity, we shall write G0

λ, r = Gλ, r .

Lemma 4.2. Given α ∈ R and a positive integer `, assume that m satisfies
the condition (1.8). Let λ > 0, 2 ≤ r < ∞ and let ϕ, ψ ∈ A. For a tempered
distribution f , set u(x, t) = (f ∗ ϕt)(x).

(1) If ` > λ+ n/2 and Φ = ϕ ∗ ψ, then for all x, y ∈ Rn, t > 0,

∣∣(Tmf ∗ Φt) (y)
∣∣ ≤ C tα

(
1 +

|y − x|
t

)λ

u∗λ(x, t).

(2) If ` > λ+ n(1/2− 1/r), then for |y − x| < t,∣∣(Tmf ∗ ψt) (y)
∣∣ ≤ C tαGλ, r(u)(x).

(3) If ` > λ+ n/2, then for |y − x| < t,∣∣(Tmf ∗ ψt) (y)
∣∣ ≤ C tαNλ(u)(x),

where Nλ(u) = M+(u∗λ), that is,

Nλ(u)(x) = sup
t>0, y∈Rn

|u(y, t)|
(

1 +
|y − x|
t

)−λ

.

Proof. In view of the representation

(Tmf ∗ Φt) (y) =
∫

Rn

u(y − z)(K ∗ ψt)(z) dz,

the first estimate is an immediate consequence of (1) of Lemma 4.1.
According to Lemma 3.1, there exists a Schwartz function ζ such that ζ̂ has

compact support away from the origin and∫ ∞

0

ϕ̂(sξ) ζ̂(sξ)
ds

s
= 1, ξ 6= 0.

It follows that

(Tmf ∗ ψt)(y) =
∫ ∞

0

(f ∗ ϕs ∗K ∗ ζs ∗ ψt)(y)
ds

s

=
∫ ∞

0

∫

Rn

u(y − z, s)(K ∗ ζs ∗ ψt)(z) dz
ds

s
.

For |y − x| < t, Hölder’s inequality gives, with 1/r + 1/q = 1,

∣∣(Tmf ∗ ψt)(y)
∣∣ ≤ Gλ, r(u)(x)

[∫ ∞

0

(
1 +

t

s

)λq

sn(q−1)
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∫

Rn

(
1 +

|z|
s

)λq

|(K ∗ ζs ∗ ψt)(z)|q dz ds
s

]1/q

.(4.3)

Choose µ so that µ > n(1/q − 1/2) and ` ≥ λ + µ. By Hölder’s inequality
again and (2) of Lemma 4.1, we estimate

∫

Rn

(
1 +

|z|
s

)λq

|(K ∗ ζs ∗ ψt)(z)|q dz ds
s

≤ C sn(1−q/2)

[∫

Rn

(
1 +

|z|
s

)2(λ+µ)

|(K ∗ ζs ∗ ψt)(z)|2 dz ds
s

]q/2

≤ C sn(1−q)+αq

(
t

s

)kq (
1 +

t

s

)−Nq

,

where k,N are arbitrary positive integers. Upon selecting k,N so that k > α
and N > λ+ k − α, it is easy to see that

∫ ∞

0

sαq

(
t

s

)kq (
1 +

t

s

)(−N+λ)q
ds

s
≤ C tαq.

Inserting these two estimates into (4.3), we obtain the estimate in (2).
The proof of the estimate in (3) is similar. ¤

5. Main results on Fourier multipliers

Owing to the characterization results of Triebel-Lizorkin spaces established
in Section 3, the basic estimates of Lemma 4.2 enable us to deduce mapping
properties of Tm on Triebel-Lizorkin spaces rather easily. As it is standard in
deriving Sobolev-type inequalities, our results will be obtained from estimating
the characterizing means relevant for the target spaces in terms of those relevant
for the domain spaces.

To begin with, we have the following result, a special case of which is often
referred to as the lifting property.

Theorem 5.1. Let α, γ ∈ R, 0 < p < ∞ and 0 < r ≤ ∞. Suppose that m
satisfies the condition (1.8) with ` > max (n/p, n/r) + n/2. Then

(5.1) ‖Tmf‖Ḟ α+γ
p, r

≤ C ‖f‖Ḟ γ
p, r

.

If ` > λ+ n/2 and λ is sufficiently large (as in Theorem 3.4), then

(5.2) ‖Tmf‖Ḟ α+γ
∞, r

≤ C ‖f‖Ḟ γ
∞, r

.

Proof. Under the same setting as in Lemma 4.2, the first estimate (1) shows
that with U(x, t) = (Tmf ∗ Φt)(x),

t−(α+γ) U∗λ(x, t) ≤ C t−γ u∗λ(x, t),

which yields the stated results in view of theorems in Section 3. ¤

Our principal result is the following.
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Theorem 5.2. Given α ∈ R, 0 < p < ∞ and 0 < r ≤ ∞, let β be any real
with β < α and let p∗ be determined by

(5.3) β − n/p∗ = α− n/p, 0 < p∗ ≤ ∞.

Assume that m satisfies the condition (1.8) with

(5.4) ` >

{
max (n/p, n/r) + n(1/2− 1/r) if 2 ≤ r ≤ ∞,

max (n/p, n/2) if 0 < r < 2.

Then Tm maps Fp, r boundedly into Ḟ β
p∗, q for any 0 < q ≤ ∞ with

(5.5) ‖Tmf‖Ḟ β
p∗, q

≤ C ‖f‖Fp, r
.

Proof. In view of the monotone imbedding property, it suffices to consider the
case 0 < q < ∞ (see Remark 5.1 below). Fix q with 0 < q < ∞. As in
Lemma 4.2, we choose ϕ, ψ ∈ A and put

U(x, t) = (Tmf ∗ ψt)(x), u(x, t) = (f ∗ ϕt)(x).

Part I. Assume first f ∈ Fp, r with 2 ≤ r < ∞. Due to different charac-
terizing means, there are two cases for which we need to treat separately.

Case 1. 0 < p∗ <∞, that is, α− β − n/p < 0.
We choose λ so that λ > max (n/p, n/r) and λ + n(1/2 − 1/r) < `. The

second estimate of Lemma 4.2 states that

(5.6) |U(y, t)| ≤ C tαGλ, r(u)(x) for |y − x| < t.

Raising this inequality to the power of p and then integrating over the ball
B(y, t) with respect to dx, we get

(5.7) |U(y, t)| ≤ C tα−n/p ‖Gλ, r(u)‖p for |y − x| < t.

For a constant A > 0, we use these two inequalities to estimate
[
Sβ

1, q(U)(x)
]q

=

(∫ A

0

+
∫ ∞

A

)∫

|y−x|<t

|U(y, t)|qt−n−qβ dy
dt

t

≤ C
{
A(α−β)q [Gλ, r(u)(x)]

q +A(α−β−n/p) ‖Gλ, r(u)‖q
p

}
.

Optimizing this inequality over A, that is, taking A so as to

An/p = ‖Gλ, r(u)‖p / [Gλ, r(u)(x)] ,

we obtain the estimate

Sβ
1, q(U)(x) ≤ C [Gλ, r(u)(x)]

p/p∗ ‖Gλ, r(u)‖1−p/p∗
p .

This implies instantly that

(5.8)
∥∥∥Sβ

1, q(U)
∥∥∥

p∗
≤ C ‖Gλ, r(u)‖p ,

which yields the claim (5.5) in view of Theorem 3.2.

Case 2. p∗ = ∞, that is, α− β − n/p = 0.
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The estimate (5.6) shows that for |y − x| < t,
∫ t

0

(
s−β |U(y, s)|)q ds

s
≤ C t(α−β)q [Gλ, r(u)(x)]

q
.

Raising this inequality to the power of p/q and then integrating over the ball
B(y, t) with respect to dx, we get

∫ t

0

(
s−β |U(y, s)|)q ds

s
≤ C t(α−β−n/p)q ‖Gλ, r(u)‖q

p = C ‖Gλ, r(u)‖q
p .

It follows that for all t > 0,

1
|B(x, t)|

∫

B(x,t)

∫ t

0

(
s−β |U(y, s)|)q ds

s
≤ C ‖Gλ, r(u)‖q

p ,

which implies that

(5.9) N β
q (U)(x) ≤ C ‖Gλ, r(u)‖p ,

whence we get (5.5) in view of Theorem 3.4.

Part II. Suppose now f ∈ Fp,∞. Replacing the estimate (5.6) by

|U(y, t)| ≤ C tαNλ(u)(x) for |y − x| < t,

which follows from (3) of Lemma 4.2, the same arguments yield
∥∥∥Sβ

1, q(U)
∥∥∥

p∗
≤ C ‖Nλ(u)‖p when 0 < p∗ <∞,(5.10)

N β
q (U)(x) ≤ C ‖Nλ(u)‖p when p∗ = ∞.(5.11)

Part III. We finally consider the case f ∈ Fp, r with 0 < r < 2. Owing to
the imbedding Fp, r ↪→ Fp, 2, the claimed statement and inequality (5.5) are
direct consequences of Part I. ¤

Remark 5.1. In the case q = ∞, a direct proof of (5.5) can be obtained in a
similar manner from estimating the non-tangential maximal functions. To be
precise, noticing

Mβ
1 (U)(x) ≤

(
sup

0<t≤A
+ sup

t>A

) [
sup

y∈B(x,t)

t−β |U(y, t)|
]
,

with A > 0 to be optimized, and proceeding as above, we obtain

(5.12)
∥∥∥Mβ

1 (U)
∥∥∥

p∗
≤ C ‖Gλ, r(u)‖p .

On account of Theorem 3.3, this proves the claim (5.5).

While we restricted our domains to the spaces Fp, r, it is straightforward to
extend Theorem 5.2 to arbitrary domains.
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Corollary 5.1. Given α, γ ∈ R, 0 < p < ∞ and 0 < r ≤ ∞, let β be any
real with β < α+ γ and let p∗ be determined by

(5.13) β − n/p∗ = α+ γ − n/p, 0 < p∗ ≤ ∞.

Assume that m satisfies the condition (1.8) with (5.4). Then Tm maps Ḟ γ
p, r

boundedly into Ḟ β
p∗, q for any 0 < q ≤ ∞ with

(5.14) ‖Tmf‖Ḟ β
p∗, q

≤ C ‖f‖Ḟ γ
p, r

.

Proof. The result follows from either a minor modification of the proof of The-
orem 5.2 or considering the symbols m̃(ξ) = m(ξ) |ξ|−γ and Proposition 2.1.
We shall omit the details. ¤

6. Application to Sobolev imbedding

An immediate consequence of Theorem 5.2 is the following Sobolev imbed-
ding theorem (refer to B. Jawerth [12], H. Triebel [19], J. Johnsen and W. Sickel
[13], where the last paper contains a brief history).

Theorem 6.1. Given reals α > β and 0 < p <∞, 0 < r ≤ ∞, let 0 < p∗ ≤
∞ be determined from β − n/p∗ = α− n/p. Then

Ḟα
p, r ⊂

⋂
q>0

Ḟ β
p∗, q

with the continuous imbedding Ḟα
p, r ↪→ Ḟ β

p∗, q for each 0 < q ≤ ∞.

Proof. Take m(ξ) = |ξ|−α in Theorem 5.2 and apply Proposition 2.1. ¤
Remark 6.1. In view of the homogeneity (see [10])

‖ft‖Ḟ α
p, r

= tn(1/p−1)−α ‖f‖Ḟ α
p, r

,

where ft denotes the distribution defined by means of Fourier transform f̂t(ξ) =
f̂(tξ) for each t > 0, it is easy to observe that the condition β−n/p∗ = α−n/p
arises rather necessarily.

In addition, we should point out that our result includes the case p∗ = ∞
for which we do not know if it is known yet. Another point is that our proof
deals with an arbitrary r although it suffices to deal with the case r = ∞ due
to the monotone imbedding property (1.7).

Theorem 6.1 gives the best possible improvements of Sobolev-type inequali-
ties in the scales of Triebel-Lizorkin spaces. To pick out some of special cases,
we state the following.

Corollary 6.1. Let α > 0, 0 < p <∞ and 0 < q ≤ 2 ≤ r ≤ ∞.

(1) If 0 < p < α/n, then with 1/p∗ = 1/p− α/n,

Ḣp
α ↪→ Ḟα

p, r ↪→ Fp∗, q ↪→ Hp∗ .
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(2) If p = α/n, then

Ḣp
α ↪→ Ḟα

p, r ↪→ F∞, q ↪→ BMO.

(3) If α/n < p <∞, then

Ḣp
α ↪→ Ḟα

p, r ↪→ Ḟα−n/p
∞, q ↪→ Iα−n/p(BMO).

Proof. Take β = 0 if 0 < p∗ <∞ and β = α− n/p if p∗ = ∞. ¤

7. Further results on Besov-Lipschitz spaces

Given any ϕ ∈ A , the homogeneous Besov-Lipschitz spaces are the spaces
of tempered distribution f on Rn such that the quasi-norms

(7.1) ‖f‖Ḃα
p, r

=
(∑

j∈Z

(
2jα ‖f ∗ ϕ2−j‖p

)r
)1/r

(α ∈ R, 0 < p, r ≤ ∞)

are finite (defined modulo polynomials but with no need to separate the case
p = ∞ ). By the same reasoning as in Section 2, we may view

(7.2) Ḃα
p, r = Iα(Bp, r), where Bp,r = Ḃ0

p, r.

As a continuous version of (7.1), it is proved in [1] that

(7.3) ‖f‖Ḃα
p, r

≈
(∫ ∞

0

(
t−α‖u∗λ(·, t)‖p

)r dt

t

)1/r

, λ > n/p,

where u(x, t) = (f ∗ ϕt)(x), ϕ ∈ Oα and u∗λ denotes the Peetre maximal
function of u defined as in Definition 3.2.

Owing to the characterization (7.3), it is plain to adopt the same methods
and ideas as in the preceding sections to obtain the mapping properties of Tm

on Besov-Lipschitz spaces.

Theorem 7.1. Given α ∈ R, 0 < p < ∞ and 0 < r ≤ ∞, let β be any real
with β < α and let p∗ be determined by

β − n/p∗ = α− n/p, 0 < p∗ ≤ ∞.

If m satisfies the condition (1.8) with ` > n(1/p+ 1/2), then

(7.4) ‖Tmf‖Ḃβ
p∗, r

≤ C ‖f‖Bp, r
.

Proof. Choose ϕ, ψ ∈ A. Let Φ = ϕ ∗ ψ and

u(x, t) = (f ∗ ϕt)(x), U(x, t) = (Tmf ∗ Φt)(x).

It follows easily from the estimate (1) of Lemma 4.2 that

(7.5) U∗λ(x, t) ≤ C tα u∗λ(x, t), U∗λ(x, t) ≤ C tα−n/p ‖u∗λ(·, t)‖p .

Fix t > 0. Normalizing if necessary, we may assume C = 1 in both estimates
of (7.5). With A = ‖u∗λ(·, t)‖p , it follows that for any q > p,

∫

Rn

[U∗λ(x, t)]q dx = q

∫ A tα−n/p

0

∣∣{U∗λ(·, t) > s
}∣∣ sq−1 ds
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≤ C tαq

∫ A t−n/p

0

∣∣{u∗λ(·, t) > s
}∣∣ sq−1 ds

≤ C tαq ‖u∗λ(·, t)‖p
p

∫ A t−n/p

0

sq−p−1 ds

= C tq(α−n/p+n/q) ‖u∗λ(·, t)‖q
p ,

where the second inequality follows from Chebychev’s inequality. Thus

(7.6) t−(α−n/p+n/q) ‖U∗λ(·, t)‖q ≤ C ‖u∗λ(·, t)‖p .

Upon setting β = α− n/p+ n/q, q = p∗, (7.6) gives
∫ ∞

0

(
t−β ‖U∗λ(·, t)‖p∗

)r dt

t
≤

∫ ∞

0

(
‖u∗λ(·, t)‖p

)r dt

t
,

which yields the desired result in view of (7.3). ¤

Upon taking m(ξ) = |ξ|−α, we have (see e.g., [9]):

Corollary 7.1. Given reals α > β and 0 < p <∞, 0 < r ≤ ∞, let 0 < p∗ ≤
∞ be determined from β − n/p∗ = α− n/p. Then

Ḃα
p, r ↪→ Ḃβ

p∗, r.

In the last place, we record an interesting imbedding result of Besov-Lipschitz
spaces into Triebel-Lizorkin spaces that follows from Theorem 6.1 and elemen-
tary imbedding properties.

Corollary 7.2. Given reals α > β and 0 < p < ∞, let 0 < p∗ ≤ ∞ be
determined from β − n/p∗ = α− n/p. If 0 < r ≤ p, then

Ḃα
p, r ⊂

⋂
q>0

Ḟ β
p∗, q

with the continuous imbedding Ḃα
p, r ↪→ Ḟ β

p∗, q for each 0 < q ≤ ∞.
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