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ON HARMONICITY IN A DISC AND n-HARMONICITY

Jaesung Lee

Abstract. Let τ 6= δ0 be either a power bounded radial measure with
compact support on the unit disc D with τ(D) = 1 such that there
is a δ > 0 so that |τ̂(s)| 6= 1 for every s ∈ Σ(δ) \ {0, 1}, or just a
radial probability measure on D. Here, we provide a decomposition of
the set X = {h ∈ L∞(D) | limn→∞ h ∗ τn exists}. Let τ1, . . . , τn be
measures on D with above mentioned properties. Here, we prove that
if f ∈ L∞(Dn) satisfies an invariant volume mean value property with
respect to τ1, . . . , τn, then f is n-harmonic.

1. Introduction

LetD be the open unit disc of C, ν be the Lebesgue measure on C normalized
to ν(D) = 1 and let µ be the conformally invariant measure on D defined by
dµ(z) = (1− |z|2)−2 dν(z), which satisfies

∫

D

u dµ =
∫

D

u ◦ ϕ dµ

for every u ∈ L1(µ) and for every ϕ ∈ Aut(D). And then let us denote LpR(µ)
to be the subspace of Lp(µ) which consists of radial functions.

It is known that (see [3], [4]) L1
R(µ) is a commutative Banach algebra under

the convolution

(1.1) (u ∗ v)(z) =
∫

D

u
(
ϕz(x)

)
v(x) dµ(x), where ϕz(x) =

z − x

1− z̄x
.

Likewise if τ is a radial measure with τ(D) = 1, we define the convolution u∗ τ
on D by

(u ∗ τ)(z) =
∫

D

u
(
ϕz(x)

)
dτ(x).
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For f ∈ L1
R(µ), we define its Gelfand transform by

f̂(s) =
∫

D

f(z)
(1− |z|2
|1− z|2

)s
dµ(z), 0 ≤ <s ≤ 1.

Likewise if τ is a radial measure with τ(D) = 1, its Gelfand transform is defined
by

τ̂(s) =
∫

D

(1− |z|2
|1− z|2

)s
dτ(z).

We know that if u ∈ L1(D, τ) is harmonic, then u◦ϕ is also harmonic for every
ϕ ∈ Aut(D).

Thus u ◦ ϕ satisfies a volume mean value property;

u
(
ϕ(0)

)
=

∫

D

u ◦ ϕ dτ for every ϕ ∈ Aut(D),

which is equivalent to u ∗ τ = u.
One of the main results of [1] is that if ν is a normalized Lebesgue mea-

sure and u ∈ L1(D, ν) satisfies u ∗ ν = u, then u is harmonic. Much earlier,
Furstenberg [5], [6] proved that if m is a radial probability measure on D and
u ∈ L∞(D) satisfies u ∗ m = u, then u is harmonic. Indeed, his result says
much more is true: On any dimensional symmetric domain, a bounded function
which satisfies a certain convolution type of mean value property is harmonic
with respect to the intrinsic metric. For example, applying Furstenberg’s result
to the polydisc Dn, we get that if m1, . . . ,mn are radial probability measures
on D, and if f ∈ L∞(Dn) satisfies

f
(
ψ(0, . . . , 0)

)
=

∫

D

· · ·
∫

D

f ◦ ψ dm1 · · · dmn for every ψ ∈ Aut(Dn),

then f is n-harmonic (It means ∆1f = · · · = ∆nf = 0).
In 1992, Benyamini and Weit [3] introduced another type of non-positive

measure on D and got results analogous to those of Furstenberg. Here we state
two theorems of [3].

Theorem 1.1 ([3, Theorems 2.1 and 2.3]). Let τ(τ 6= δ0) be a power bounded
radial measure with compact support on D with τ(D) = 1, and there is a
δ > 0 so that |τ̂(s)| 6= 1 for every s ∈ Σ(δ) \ {0, 1}, where Σ(δ) is the strip
−δ < <s < 1 + δ. Or let τ be a radial probability measure on D. If u ∈ L1

R(µ)
satisfies

∫
D
u dµ = 0, then u ∗ τn → 0 in the norm of L1(µ).

Theorem 1.2 ([3, Theorem 3.1]). Let τ(τ 6= δ0) be a power bounded radial
measure with compact support on D with τ(D) = 1, and there is a δ > 0 so that
|τ̂(s)| 6= 1 for every s ∈ Σ(δ) \ {0, 1}, where Σ(δ) is the strip −δ < <s < 1 + δ.
Or let τ be a radial probability measure on D. If v ∈ L∞(D) satisfies v ∗ τ = v,
then v is harmonic.

This paper, in Theorem 1.3, we use the results of Benyamini and Weit
(Theorems 1.1 and 1.2) to investigate the existence of the limit of h ∗ τn for
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h ∈ L∞(D). Indeed, we decompose the space X = {h ∈ L∞(D) | limn→∞ h ∗
τn exists} as a direct sum of the space of bounded harmonic functions and the
closure of the space A = {h−h∗τ | h ∈ L∞(D)}. And then, in Theorem 1.4, we
prove that Theorem 1.2 can extend to the n dimensional polydisc Dn. Indeed,
one can easily see that if f is an integrable n-harmonic function on Dn and
τ1, . . . , τn are radial measures on D with τ1(D) = · · · = τn(D) = 1 (τ1, . . . , τn
need not be positive measures.), then for every z1, . . . , zn ∈ D, we have

(1.2) f(z1, . . . , zn) =
∫

D

· · ·
∫

D

f
(
ϕz1(x1), · · ·, ϕzn

(xn)
)
dτ1(x1) · · · dτn(xn).

Recently, the author [8] proved that in case n ≥ 2, f ∈ Lp(Dn, τ1×· · ·× τn) for
1 ≤ p <∞, satisfying (1.2) does not imply n-harmonicity even if τ1, . . . , τn are
radial probability measures. This paper, Theorem 1.4 asserts that, in case f ∈
L∞(Dn), if τ1, . . . , τn satisfy the conditions of the above mentioned Benyamini
and Weit’s theorems, then satisfying (1.2) implies n-harmonicity of f . Here are
our main results.

Theorem 1.3. Let τ 6= δ0 be a power bounded radial measure with compact
support on D with τ(D) = 1, and there is a δ > 0 so that |τ̂(s)| 6= 1 for every
s ∈ Σ(δ) \ {0, 1}. Or let τ be a radial probability measure on D. Suppose we
denote X = {h ∈ L∞(D) | limn→∞ h ∗ τn exists}, H the set of all bounded
harmonic functions in D and A = {h − h ∗ τ | h ∈ L∞(D)}. Then X can be
decomposed as X = H ⊕ A, where A is the closure of A. Also, if there is
C > 0 such that |τ | ≤ Cµ, then X is a proper subset of L∞(D).

Theorem 1.4. Let τ1, . . . , τn be radial measures on D with compact support
and τi(D) = 1, τi 6= δ0 for 1 ≤ i ≤ n. And suppose, for each 1 ≤ i ≤ n there is
a δi > 0 so that |τ̂i(s)| 6= 1 for every s ∈ Σ(δi)\{0, 1}. Or let τ1, . . . , τn(τi 6= δ0
for 1 ≤ i ≤ n) be radial probability measures on D. If f ∈ L∞(Dn) satisfies

f(z1, . . . , zn) =
∫

D

· · ·
∫

D

f
(
ϕz1(x1), . . . , ϕzn(xn)

)
dτ1(x1) · · · dτn(xn)

for every z1, . . . , zn ∈ D, then f is n-harmonic.

We provide the proof of Theorem 1.3 in Section 2 and proof of Theorem 1.4
in Section 3.

2. Iterates of convolutions

Now we will prove Theorem 1.3 and then, in Proposition 2.1, we will express
the subspace A = {h−h∗τ | h ∈ L∞(D)} of L∞(D) in Theorem 1.3 in terms of
iterates of convolutions. In the proof of Theorem 1.3, we will do the case when
τ 6= δ0 is a power bounded radial measure with compact support on D with
τ(D) = 1, and there is a δ > 0 so that |τ̂(s)| 6= 1 for every s ∈ Σ(δ) \ {0, 1}. In
the case when τ is a radial probability measure, the proof is identical.
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Proof of Theorem 1.3. First, we’ll show that X ⊂ H + A.
For an h ∈ X, let Ph ∈ L∞(D) satisfy limn→∞ ‖ h ∗ τn −Ph ‖∞ = 0. Then

Ph is continuous onD and the convergence is also pointwise almost everywhere,
thus by the dominated convergence theorem, we have

(Ph) ∗ τ = P (h ∗ τ) = lim
n→∞

h ∗ τn+1 = Ph.

Thus by Theorem 1.2, Ph is harmonic in D. Now we denote h1 = Ph and
h2 = h− Ph and then we get h = h1 + h2. Now we’ll prove that h2 ∈ A.

For g ∈ L1(ν) we define Bτg = g ∗ τ . Then we see that A = (I−Bτ )L∞(D).
Now let d ∈ L∞(D)∗ satisfy 〈d , g −Bτg〉 = 0 for every g ∈ L∞(D), then we
get 〈B∗τd− d, g〉 = 0 for every g ∈ L∞(D). This means that B∗τd = d. Hence
we have

(2.1) 〈d , h− Ph〉 =
〈
(B∗τ )

kd , h− Ph
〉

=
〈
d , Bkτ (h− Ph)

〉
for all k.

But from the definition of the operator P , we see that

lim
k→∞

‖ Bkτ (h− Ph) ‖∞ = 0.

Thus, by taking the limit k → ∞ in (2.1), we get 〈d , h− Ph〉 = 0. Hence by
the Hahn-Banach theorem, h2 = h − Ph is in the closure of (I − Bτ )L∞(D)
and this proves that X ⊂ H + A.

On the other hand, for ψ ∈ Aut(D) and z ∈ D, ϕψ(z) ◦ ψ ◦ ϕz takes 0 to 0
thus is eiθ for some θ. Hence by rotation-invariance of τ ,

Bτ (g◦ψ)(z) =
∫

D

g
(
(ψ(ϕz(x))

)
dτ(x) =

∫

D

g
(
ϕψ(z)e

iθx
)
dτ(x) = (Bτg)(ψ(z)).

Also if u ∈ L1
R(µ) and v ∈ L∞R (D), then we get

∫

D

u · (Bτv) dµ = (u ∗ v ∗ τ)(0) = (u ∗ τ ∗ v)(0) =
∫

D

(Bτu) · v dµ.

This means that the operator Bτ on L∞R (D) is the adjoint of Bτ on L1
R(µ).

And, since L∞R (D) is the dual space of L1
R(µ), we see that the spectrum of Bτ

on L∞R (D) is the same as the spectrum of Bτ on L1
R(µ). Now let λ be in the

spectrum of Bτ on L∞(D), then there exists a sequence {gk} in L∞(Bn) with
‖gk‖∞ = 1 satisfying limk→∞ ‖ Bτgk − λgk ‖∞ = 0.

Let φk ∈ Aut(D) satisfy ‖ R(gk◦φk) ‖∞ = 1 where Rg(z) = 1
2π

∫ 2π

0
g(zeiθ)dθ

denotes the radialization of g. Since Bτ and R are bounded on L∞(Bn), we
have

‖ Bτ
(
R(gk ◦ φk)

)− λR(gk ◦ φk) ‖∞ = ‖ R (
Bτ (gk ◦ φk)

)−R(λgk ◦ φk) ‖∞
≤ ‖ Bτ (gk ◦ φk)− λgk ◦ φk ‖∞
= ‖ (Bτgk) ◦ φk − λgk ◦ φk ‖∞
= ‖ Bτgk − λgk ‖∞ → 0 as k → ∞.

Hence λ is in the spectrum of Bτ on L∞R (D).
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In the proof of Theorem 2.3 of [3], it is shown that the spectrum of Bτ , as
an operator on L1

R(µ), intersects the unit circle at most at the single point 1.
Hence, by the above argument, the spectrum of Bτ on L∞(D) also intersects
the unit circle at most at the single point 1. By the theorem of Katznelson and
Tzafriri [7, Theorem 1], we see that

(2.2) lim
k→∞

‖Bkτ (I −Bτ )‖ = 0 on L∞(D).

By (2.2) we see that if h ∈ A, then h∗τn → 0 in L∞(D) and thus H∩A = {0}.
Therefore, we get X = H ⊕ A and to complete the proof, it remains to show
that X is a proper subset of L∞(D) when we assume that there is C > 0 such
that |τ | ≤ Cµ. Theorem 6.1 of [2] deals with a similar case.

Suppose we assume that X = L∞(D). Then limn→∞ h ∗ τn exists for every
h ∈ L∞(D).

Now we choose u ∈ L1
R(µ) with

∫
D
u dµ 6= 0. Then for every ` ∈ L∞R (D),

(2.3) lim
n→∞

∫

D

` · (u ∗ τn) dµ = lim
n→∞

∫

D

u · (` ∗ τn) dµ exists.

Since L1
R(µ) is weak complete, u ∗ τn converges weakly to some v ∈ L1

R(µ).
And then u ∗ τn+1 converges to v ∗ τ , which implies that v ∗ τ = v. For each
z ∈ D, we have

|v(z)| = | (v∗τ)(z) | ≤
∫

D

|v◦ϕz| d|τ | ≤ C

∫

D

|v◦ϕz| dµ = C

∫

D

|v| dµ =‖v‖L1(µ).

Thus v is bounded and by Furstenberg’s theorem, v is harmonic in D. Since a
constant is the only radial harmonic function, and since 0 is the only constant
that belongs to L1(µ), we conclude that v is the constant zero. Now putting
` = 1 to the integral in (2.3), we get∫

D

u dµ =
∫

D

u · (1 ∗ τn) dµ =
∫

D

u ∗ τn dµ,

which tends to 0 as n → ∞ to conclude that
∫
D
u dµ = 0 contradicting our

assumption.
Therefore, X is a proper subset of L∞(D) when we assume that there is

C > 0 such that |τ | ≤ Cµ and this completes the proof of the theorem. ¤
In the proof of Theorem 1.3, we’ve shown that

A = {h ∈ L∞(D) | lim
n→∞

h ∗ τn = 0}.
Now in the following proposition, we will show that the space A can be ex-
pressed in terms of iterates of convolutions.

Proposition 2.1. With the same assumptions and notations as Theorem 1.3,
we have

(2.4) A = {h ∈ L∞(D) | lim sup
n→∞

‖
n∑
0

h ∗ τk ‖∞ <∞ }.
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Proof. Let f = h − h ∗ τ for some h ∈ L∞(D) and let K = sup ‖τn‖. Then
‖ ∑n

0 f ∗ τk ‖∞ = ‖ h− h ∗ τn+1 ‖∞ ≤ (1 +K)‖h‖∞. Thus we can see that

A ⊂
{
h ∈ L∞(D) | lim sup

n→∞
‖

n∑
0

h ∗ τk ‖∞ <∞
}
.

On the other hand, pick h ∈ L∞(D) such that lim sup ‖ ∑n
0 h ∗ τk ‖∞ = M <

∞.
Now if we denote hk =

∑k
j=0 h ∗ τ j , then hk − hk ∗ τ = h− h ∗ τk+1. Hence

if we let Hn = 1
n+1

∑n
k=0 hk, then we get ‖Fn‖∞ ≤M and we also have

Hn −Hn ∗ τ =
1

n+ 1

n∑

k=0

(hk − hk ∗ τ)

=
1

n+ 1

n∑

k=0

(h− h ∗ τk+1)

= h− 1
n+ 1

n∑

k=0

h ∗ τk+1.

Hence

‖ Hn −Hn ∗ τ − h ‖∞ ≤ 1
n+ 1

M → 0.

But a norm bounded sequence Hn has a subsequence Hnj that converges weak∗

to some g ∈ L∞(D) and as in the proof of Theorem 1.3, the operator I −Bτ is
self-adjoint in L1(µ), which makes (I−Bτ )Hnj converge to (I−Bτ )g weak∗ in
L∞(D). Since (I−Bτ )Hn = Hn−Hn∗τ converge to h in norm, h is the unique
weak∗ limit of (I −Bτ )Hn. Hence we have h = (I −Bτ )g = g− g ∗ τ ∈ A. This
completes the proof of the proposition. ¤

3. n-harmonicity

Here we prove Theorem 1.4. Even though the theorem is true for every
n ∈ N, for the notational simplicity, in the proof we restrict ourselves to the
case of n = 2.

Proof of Theorem 1.4. Let f ∈ L∞(D2) and let us denote

(Tf)(z, w) =
∫ ∫

D2
f
(
ϕz(x), ϕw(y)

)
dτ1(x) dτ2(y)

and then assume that f satisfies Tf = f .
First we prove the case that f is 2-radial, i.e., f(z, w) = f(|z|, |w|) for all

z, w ∈ D.
Since τ1(D) = τ2(D) = 1 for v ∈ L∞R (D), we can write by induction,

(v∗τn1 )(z) =
∫

D

v(x) Pn(z, x) dτ1(x) and (v∗τn2 )(z) =
∫

D

v(x)Qn(z, x) dτ2(x)
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for some Pn(z, x) and Qn(z, x) which satisfy∫

D

Pn(z, x) dτ1(x) =
∫

D

Qn(z, x) dτ2(x) = 1 for all n ≥ 1.

Since τ1, τ2 are power bounded, there is M > 0 such that, for every n ≥ 1,

‖ v ∗ τn1 ‖∞ ≤M‖v‖∞ and ‖ v ∗ τn2 ‖∞ ≤M‖v‖∞.
Now fix w ∈ D and define (fw)n ∈ L∞R (D) as

(fw)n(z) =
∫

D

f(z, y) Qn(w, y) dτ2(y).

Then we get ‖(fw)n‖∞ ≤M‖f‖∞ for every n ≥ 1. And we also get
(
(fw)n ∗ τn1

)
(z) =

∫

D

(fw)n(x) Pn(z, x) dτ1(x)

=
∫ ∫

D2
f(x, y) Pn(z, x) Qn(z, y) dτ1(x) dτ2(y)

= (Tnf)(z, w).

Now let u ∈ L1
R(µ) satisfy

∫
D
u dµ = 0. Then for each fixed w ∈ D, we have

∫

D

u(z) f(z, w) dµ(z) =
∫

D

u(z)(Tnf)(z, w) dµ(z)

=
∫

D

u(z)
(
(fw)n ∗ τn1

)
dµ(z)

=
(
u ∗ (fw)n ∗ τn1

)
(0)

=
(
(u ∗ τn1 ) ∗ (fw)n

)
(0)

=
∫

D

(u ∗ τn1 )(z) (fw)n(z) dµ(z),

since the convolution is commutative and associative because u, τ, (fw)n are
radial. Hence we get,∣∣∣∣

∫

D

u(z) f(z, w) dµ(z)
∣∣∣∣ ≤ ‖(fw)n‖∞ ‖ u ∗ τn1 ‖L1(τ).

Here we have ‖(fw)n‖∞ ≤ M‖f‖∞ and by Theorem 1.1 ([3, Theorem 2.3]),
we get

‖ u ∗ τn1 ‖L1(τ) → 0 as n→∞.

Hence we conclude that ∫

D

u(z)f(z, w) dµ(z) = 0,

which means f(z, w) is a constant for every fixed w; i.e., f is a function of w
variable only.

Let f(z, w) = g(w). Then Tf = f implies that g ∗ τ2 = g. Now applying
Theorem 1.2 ([3, Theorem 3.1]), we conclude that g is a constant (since g is
radial and harmonic). Hence f is a constant.
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The rest of the proof follows a well-known traditional method (See, for ex-
ample, proofs of Theorem 3.1 of [3] or Corollary 19 of [4]). Let f ∈ L∞(D2)
satisfies Tf = f . Then we consider the 2-radialization Rf of f defined by

(Rf)(z, w) =
1

(2π)2

∫ 2π

0

∫ 2π

0

f(zeiθ, weiη) dθ dη,

which satisfies, by Fubini’s theorem, that T (Rf) = R(Tf) = Rf. Hence by
previous argument Rf is a constant, which means

(3.1) f(0, 0) =
1

(2π)2

∫ 2π

0

∫ 2π

0

f(zeiθ, weiη) dθ dη for all z, w ∈ D.

Now pick (z, w) ∈ D2 and let ψ ∈ Aut(D2) be defined by ψ(x, y) = (ϕz(x),
ϕw(y)). Then by the rotation invariance of τ1 and τ2, we can easily get T (f ◦
ψ) = Tf ◦ ψ = f ◦ ψ. Thus we can replace f by f ◦ ψ in (3.1) to get

f(z, w) =
1

(2π)2

∫ 2π

0

∫ 2π

0

f
(
ϕz(xeiθ), ϕw(yeiη)

)
dθ dη for all x, y ∈ D.

Put y = 0 in the above equation then use 4.2.4 of [9] to get ∆1f = 0, then we
put x = 0 to get ∆2f = 0. Hence f is 2-harmonic, which completes the proof
of the theorem. ¤
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