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ON HARMONICITY IN A DISC AND n-HARMONICITY

JAESUNG LEE

ABSTRACT. Let 7 # §p be either a power bounded radial measure with
compact support on the unit disc D with 7(D) = 1 such that there
is a § > 0 so that |7(s)] # 1 for every s € 3(d) \ {0,1}, or just a
radial probability measure on D. Here, we provide a decomposition of
the set X = {h € L*®°(D) | limp—oo h * 7™ exists}. Let 71,...,7n be
measures on D with above mentioned properties. Here, we prove that
if f € L°°(D™) satisfies an invariant volume mean value property with
respect to 71,...,Tn, then f is n-harmonic.

1. Introduction

Let D be the open unit disc of C, v be the Lebesgue measure on C normalized
to v(D) = 1 and let p be the conformally invariant measure on D defined by
du(z) = (1 —|2|*)72 dv(z), which satisfies

/udu:/uogpdu
D D

for every u € L' () and for every ¢ € Aut(D). And then let us denote L%, (x)
to be the subspace of LP(u) which consists of radial functions.

It is known that (see [3], [4]) Lk (u) is a commutative Banach algebra under
the convolution
z—x

(1.1) (uxv)(z) = /D u(p.(z)) v(z) du(z), where . (z) = 1

—Zx

Likewise if 7 is a radial measure with 7(D) = 1, we define the convolution u
on D by

(uxT7)(z) = /Du(goz(x)) dr(z).

Received March 2, 2009.

2000 Mathematics Subject Classification. Primary 31B30; Secondary 47B38.

Key words and phrases. mean value property, harmonicity, n-harmonicity, convolution,
spectrum.

This work was supported by the 2008 Special Research Grant of Sogang University.

(©2010 The Korean Mathematical Society

815



816 JAESUNG LEE

For f € L} (u), we define its Gelfand transform by

f(s)z/D f(z )(|11_|zlz)sdu(z), 0<Rs<1.

Likewise if 7 is a radial measure with 7(D) = 1, its Gelfand transform is defined

by
. 1—|z[?\¢
7(s) = / ( ) dr(2).
p \[1—2z]?
We know that if u € L*(D, 7) is harmonic, then uo is also harmonic for every

v € Aut(D).
Thus u o ¢ satisfies a volume mean value property;

u(p(0)) = /D uop dr for every ¢ € Aut(D),

which is equivalent to u * 7 = w.

One of the main results of [1] is that if v is a normalized Lebesgue mea-
sure and u € L'(D,v) satisfies u * v = u, then u is harmonic. Much earlier,
Furstenberg [5], [6] proved that if m is a radial probability measure on D and
u € L*®(D) satisfies u * m = u, then w is harmonic. Indeed, his result says
much more is true: On any dimensional symmetric domain, a bounded function
which satisfies a certain convolution type of mean value property is harmonic
with respect to the intrinsic metric. For example, applying Furstenberg’s result

to the polydisc D™, we get that if mq,...,m, are radial probability measures
on D, and if f € L°°(D") satisfies

I / / fot dmy---dm, forevery € Aut(D"),
then f is n-harmonic (It means Ay f =--- = A, f =0).

In 1992, Benyamlm and Weit [3] mtroduced another type of non-positive
measure on D and got results analogous to those of Furstenberg. Here we state
two theorems of [3].

Theorem 1.1 ([3, Theorems 2.1 and 2.3]). Let 7(7 # do) be a power bounded
radial measure with compact support on D with (D) = 1, and there is a
§ > 0 so that |7(s)| # 1 for every s € X(J) \ {0,1}, where X(d) is the strip
—§ < Rs <1+46. Orlet T be a radial probability measure on D. If u € L (1)
satisfies [, u dp =0, then ux 7" — 0 in the norm of L' (p).

Theorem 1.2 ([3, Theorem 3.1]). Let 7(7 # dp) be a power bounded radial
measure with compact support on D with 7(D) = 1, and there is a 6 > 0 so that
|7(s)| # 1 for every s € X(d) \ {0, 1}, where X(9) is the strip —6 < Rs < 1+94.
Or let T be a radial probability measure on D. If v € L™ (D) satisfies vx1 = v,
then v is harmonic.

This paper, in Theorem 1.3, we use the results of Benyamini and Weit
(Theorems 1.1 and 1.2) to investigate the existence of the limit of h * 7" for
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h € L (D). Indeed, we decompose the space X = {h € L>®°(D) | lim,, oo h *
7" exists} as a direct sum of the space of bounded harmonic functions and the
closure of the space A = {h—hx*7 | h € L*>(D)}. And then, in Theorem 1.4, we
prove that Theorem 1.2 can extend to the n dimensional polydisc D™. Indeed,
one can easily see that if f is an integrable n-harmonic function on D™ and
Ti,...,Tn are radial measures on D with (D) =---=7,(D)=1(11,...,7™n
need not be positive measures.), then for every z1,...,z, € D, we have

(1.2) f(z1,---s2n) / / (21 (@1), 02, () dri(21) - - - ATy (50).

Recently, the author [8] proved that in case n > 2, f € LP(D™, 14 X -+ X 7, for
1 < p < o0, satisfying (1.2) does not imply n-harmonicity even if 7q,...,7, are
radial probability measures. This paper, Theorem 1.4 asserts that, in case f €
L (D™), if 7,. .., T, satisfy the conditions of the above mentioned Benyamini
and Weit’s theorems, then satisfying (1.2) implies n-harmonicity of f. Here are
our main results.

Theorem 1.3. Let 7 # dy be a power bounded radial measure with compact
support on D with 7(D) = 1, and there is a § > 0 so that |7(s)| # 1 for every
s € 3(0)\ {0,1}. Or let T be a radial probability measure on D. Suppose we
denote X = {h € L®(D) | lim,_ o h * 7" exists}, H the set of all bounded
harmonic functions in D and A ={h —hx7 | h € L>(D)}. Then X can be
decomposed as X = H @ A, where A is the closure of A. Also, if there is
C > 0 such that || < Cp, then X is a proper subset of L>°(D).

Theorem 1.4. Let 1q,...,7, be radial measures on D with compact support
and 7;(D) = 1,7; # 6o for 1 <i < n. And suppose, for each 1 < i < n there is
a d; > 0 so that |7;(s)| # 1 for every s € ¥(6;)\{0,1}. Orlet m1,..., (1 # o
for 1 <i <mn) be radial probability measures on D. If f € L*°(D™) satisfies

f(zl,...,zn>:/D~--/D F(@or (@1), s s () dra(1) - - - dr(2)

for every z1,...,2z, € D, then f is n-harmonic.

We provide the proof of Theorem 1.3 in Section 2 and proof of Theorem 1.4
in Section 3.

2. Iterates of convolutions

Now we will prove Theorem 1.3 and then, in Proposition 2.1, we will express
the subspace A = {h—h=7 | h € L>°(D)} of L°°(D) in Theorem 1.3 in terms of
iterates of convolutions. In the proof of Theorem 1.3, we will do the case when
T # §p is a power bounded radial measure with compact support on D with
7(D) =1, and there is a § > 0 so that |7(s)| # 1 for every s € 3(d) \ {0,1}. In
the case when 7 is a radial probability measure, the proof is identical.
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Proof of Theorem 1.3. First, we’ll show that X ¢ H + A.

For an h € X, let Ph € L*°(D) satisfy lim,_,o || A% 7" — Ph ||oc = 0. Then
Ph is continuous on D and the convergence is also pointwise almost everywhere,
thus by the dominated convergence theorem, we have

(Ph)*7=P(h+7)= lim hx7""! = Ph.

n—oo

Thus by Theorem 1.2, Ph is harmonic in D. Now we denote h;y = Ph and
he = h — Ph and then we get h = hq + ho. Now we’ll prove that hy € A.

For g € L'(v) we define B;g = g*7. Then we see that A = (I — B,;)L>(D).
Now let d € L>°(D)* satisty (d , g — Brg) = 0 for every g € L>°(D), then we
get (BXd —d, g) =0 for every g € L°°(D). This means that BXd = d. Hence
we have

(21)  (d, h—Ph)y={((B)*d, h— Ph) ={(d, B¥(h— Ph)) for all k.
But from the definition of the operator P, we see that

Jim | B¥ (h— Ph) || = 0.

Thus, by taking the limit & — oo in (2.1), we get (d , h — Ph) = 0. Hence by
the Hahn-Banach theorem, hy = h — Ph is in the closure of (I — B;)L*>(D)
and this proves that X ¢ H + A.

On the other hand, for ¢ € Aut(D) and z € D, @y(z) 0 ¥ o g, takes 0 to 0
thus is e’ for some #. Hence by rotation-invariance of 7,

BT(90¢)(2)=/D 9((W(e=(x))) dT(w)=/D 9(py(z)e”) dr(z) = (Brg)(¥(2)).

Also if u € L}, () and v € L35 (D), then we get

/U'(BT’U)d,LL:(U*U*T)(O):(U*T*’U)(O):/ (Bru) - v dp.
D D

This means that the operator B, on L¥ (D) is the adjoint of B, on Lk(u).
And, since LY (D) is the dual space of L} (u), we see that the spectrum of B,
on L3 (D) is the same as the spectrum of B, on Lk(u). Now let A be in the
spectrum of B, on L*°(D), then there exists a sequence {gx} in L>°(B,,) with
lgk]lco = 1 satisfying limg o0 || Brgr — Agk [loo = 0.

Let ¢), € Aut(D) satisfy || R(gro¢r) [« = 1 where Rg(z) = 5= fo%g(zew)de
denotes the radialization of g. Since B, and R are bounded on L (B,,), we
have

| B+ (R(gk 0 61)) = AR(gr © 9k) lloo = | R (Br(gk © d1)) — R(Ag © ¢k) lloo
< || Br(gr © %) — Agk © &% [loo
= || (Brgx) © ¢r — Agk © Pk [|oo
= Brgr — Ak |loo — 0 as k — oo.

Hence A is in the spectrum of B, on LY (D).
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In the proof of Theorem 2.3 of [3], it is shown that the spectrum of B, as
an operator on L} (), intersects the unit circle at most at the single point 1.
Hence, by the above argument, the spectrum of B, on L™ (D) also intersects
the unit circle at most at the single point 1. By the theorem of Katznelson and
Tzafriri [7, Theorem 1], we see that

(2.2) Jim |B*(I — B;)|| =0 on L>®(D).
—00

By (2.2) we see that if h € A, then h*7" — 0 in L>°(D) and thus HNA = {0}.
Therefore, we get X = H @ A and to complete the proof, it remains to show
that X is a proper subset of L>°(D) when we assume that there is C' > 0 such
that |7| < C'u. Theorem 6.1 of [2] deals with a similar case.

Suppose we assume that X = L°°(D). Then lim,, . h * 7" exists for every
h € L>*(D).

Now we choose u € L(p) with [ u du # 0. Then for every £ € L (D),

(2.3) lim - (ux7") dp = lim w-(Lx7") dp exists.

Since Lk(p) is weak complete, u * 7 converges weakly to some v € LL(u).
And then u * 7" converges to v * 7, which implies that v * 7 = v. For each
z € D, we have

lo(2)] =] (v+r)(2) | < /D lvop, | dir] < C /D lvog, | du = C /D ol die =Iloll 21 -

Thus v is bounded and by Furstenberg’s theorem, v is harmonic in D. Since a
constant is the only radial harmonic function, and since 0 is the only constant
that belongs to L'(u), we conclude that v is the constant zero. Now putting
¢ =1 to the integral in (2.3), we get

/udu:/ u~(1*7")du:/ u*x 1" dp,
D D D

which tends to 0 as n — oo to conclude that [ p U dp = 0 contradicting our
assumption.

Therefore, X is a proper subset of L°°(D) when we assume that there is
C > 0 such that |7| < Cp and this completes the proof of the theorem. O

In the proof of Theorem 1.3, we’ve shown that
A={he L>®(D)| lim hx71"=0}.

Now in the following proposition, we will show that the space A can be ex-
pressed in terms of iterates of convolutions.

Proposition 2.1. With the same assumptions and notations as Theorem 1.3,
we have

(2.4) A={heL>D)| limsup| Y hx7" o <oo}.

n—oo
0
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Proof. Let f = h — h* 7 for some h € L*°(D) and let K = sup ||7"||. Then
| S0 f*7% |loo = h —hx7" |0 < (1 + K)||h||oo. Thus we can see that

AcC {heL"O(D) | limsup || Zh*Tk | <oo}.
n—oo 0

On the other hand, pick h € L>(D) such that limsup|| Y g h*7" [[oc = M <
0.

Now if we denote hj, = Z?:o h+ 77, then hy, — hy * 7 = h — h % 7%t1. Hence
if we let H,, = ﬁ > h_o huw, then we get || F, [l < M and we also have

n

1
— > (hi — by x7)

k=0

H,—H,xT1=

n

_ 1 k+1

= > (h—hxrhth
k=0

= h-— ! zn:h*rk“
n+1 P ’

Hence
| Hy— Hys7—h o < —— M —0.
n+1

But a norm bounded sequence H,, has a subsequence Hy; that converges weak*
to some g € L°°(D) and as in the proof of Theorem 1.3, the operator I — B, is
self-adjoint in L' (u), which makes (I — B;)H,, converge to (I — B,)g weak* in
L>®(D). Since (I — B;)H, = H, — H,, *7 converge to h in norm, h is the unique
weak™* limit of (I — B;)H,,. Hence we have h = (I — B;)g =g—g*7 € A. This
completes the proof of the proposition. O

3. m-harmonicity

Here we prove Theorem 1.4. Even though the theorem is true for every
n € N, for the notational simplicity, in the proof we restrict ourselves to the
case of n = 2.

Proof of Theorem 1.4. Let f € L>°(D?) and let us denote

@) = [ [ Heela)puw) dna) dn)

and then assume that f satisfies T'f = f.

First we prove the case that f is 2-radial, i.e., f(z,w) = f(|z|, |w]|) for all
z,w € D.

Since 71 (D) = 12(D) =1 for v € LF (D), we can write by induction,

(vxr{)(2) = v(x) Pp(z,2) dri(z) and (vx73')(2) = / v(x) Qn(z,z) dra(x)
D D
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for some P, (z,x) and Q,(z,x) which satisfy

/P(zx)dﬁ /anz)dTQ()flforalln>1
D

Since 71, 7o are power bounded, there is M > 0 such that, for every n > 1,
[ 0% loo < Mlv]lc and [ v 75 |loo < M|v]loc-

Now fix w € D and define (fy), € LE (D) as

(Fu)u / () Qulw,y) draly).

Then we get ||(fw)nlloo < M||f|loo for every n > 1. And we also get

(fudn +70)(2) = / (fu)n(@) Po(z2) dr ()

[, 1@ Paeia) Quievn) dn(a) drfy)
= (T"f)(z,w).
Now let u € L} () satisfy [, u dpu = 0. Then for each fixed w € D, we have

/ u(z) f(zw) du(z) = / u(2) (T )z, w) dpz)
D D

_ /Du(z)((fw)nw{‘)du(z)
(u (fuw)n * 71 )(0)

— ((u*’]’in)*(fu;)n)(o)

- /D (s 71)(2) (fu)n(2) du(2),

since the convolution is commutative and associative because u, T, (fy)n are
radial. Hence we get,

/ u(z) f(z,w) du(z) ’ < N GFodnlloo | us i L)
D

Here we have ||(fw)nlloo < M| f|loo and by Theorem 1.1 ([3, Theorem 2.3]),
we get

| w7 iz — O as  n — oo.

Hence we conclude that
[ st w) dutz) =0,
D

which means f(z,w) is a constant for every fixed wj; i.e., f is a function of w
variable only.

Let f(z,w) = g(w). Then Tf = f implies that g *x 72 = g. Now applying
Theorem 1.2 ([3, Theorem 3.1]), we conclude that ¢ is a constant (since g is
radial and harmonic). Hence f is a constant.
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The rest of the proof follows a well-known traditional method (See, for ex-
ample, proofs of Theorem 3.1 of [3] or Corollary 19 of [4]). Let f € L>°(D?)
satisfies T'f = f. Then we consider the 2-radialization Rf of f defined by

1 2 27 ) )
)2 /0 ; f(ze®, we™) db dn,

which satisfies, by Fubini’s theorem, that T(Rf) = R(Tf) = Rf. Hence by

previous argument Rf is a constant, which means

(Bf)(z,w) =

1 2m 2m ) )
(3.1)  £(0,0) = e / f(ze we™) df dny for all z,w € D.
m 0 0

Now pick (z,w) € D? and let ¢ € Aut(D?) be defined by ¥ (z,y) = (p.(x),
©w(y)). Then by the rotation invariance of 7y and 7o, we can easily get T'(f o
) =Tf o1 = fo. Thus we can replace f by f o1 in (3.1) to get

27 27
few) =z [ [ fleae) eutye™ ) b dy torall sy € D.

Put y = 0 in the above equation then use 4.2.4 of [9] to get Ay f = 0, then we
put & = 0 to get Agf = 0. Hence f is 2-harmonic, which completes the proof
of the theorem. O
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