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THE UNIQUENESS THEOREMS OF MEROMORPHIC
FUNCTIONS SHARING THREE VALUES AND

ONE PAIR OF POLYNOMIALS

Xiao-Min Li and Hong-Xun Yi

Abstract. In this paper, we deal with a uniqueness theorem of two non-
constant meromorphic functions that share three values and one pair of
polynomials. The results in this paper improve those given by G. G. Gun-
dersen, G. Brosch and other authors.

1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromor-
phic functions in the complex plane. We adopt the standard notations in the
Nevanlinna theory of meromorphic functions as explained in [8] and [18]. It
will be convenient to let E denote any set of positive real numbers of finite lin-
ear measure, not necessarily the same at each occurrence. For a nonconstant
meromorphic function h, we denote by T (r, h) the Nevanlinna characteristic of
h and by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)} (r →∞, r 6∈ E).

Let f and g be two nonconstant meromorphic functions, and let a be a value
in the extended plane. We say that f and g share the value a CM, provided
that f and g have the same a-points with the same multiplicities. Similarly, we
say that f and g share the value a IM, provided that f and g have the same
a-points ignoring multiplicities (see [18]). We say that a is a small function
of f, if a is a meromorphic function satisfying T (r, a) = S(r, f) as r → ∞. In
addition, we need the following definition.

Definition 1.1 (see [3, Definition 1]). Let p be a positive integer and a ∈
C ∪ {∞}. Then by Np)(r, 1/(f − a)) we denote the counting function of those
zeros of f − a (counted with proper multiplicities) whose multiplicities are
not greater than p, by Np)(r, 1/(f − a)) we denote the corresponding reduced
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counting function (ignoring multiplicities). By N(p(r, 1/(f − a)) we denote the
counting function of those zeros of f − a (counted with proper multiplicities)
whose multiplicities are not less than p, by N (p(r, 1/(f − a)) we denote the
corresponding reduced counting function (ignoring multiplicities).

Let f and g be two nonconstant meromorphic functions, and let a be a value
in the extended plane. Let S be a subset of distinct elements in the extended
plane. Next we define

Ef (S) =
⋃

a∈S

{z : f(z) = a},

where each a-point of f with multiplicity m is repeated m times in Ef (S) (see
[6]). Similarly, we define

Ef (S) =
⋃

a∈S

{z : f(z) = a},

where each point in Ef ({a}) is counted only once. We say that f and g share
the set S CM, provided Ef (S) = Eg(S). We say that f and g share the set S

IM, provided Ef (S) = Eg(S). Next by the notation f = a =⇒ g = a we denote
Ef ({a}) ⊆ Eg({a}).

In 1926, R. Nevanlinna proved the following theorem.

Theorem A (see [17]). If f and g are nonconstant meromorphic functions
that share five values IM, then f = g.

Theorem B (see [17]). If f and g are distinct nonconstant meromorphic func-
tions that share four values a1, a2, a3 and a4 CM, then f is a Möbius trans-
formation of g, two of the shared values, say a1 and a2, are Picard values, and
the cross ratio (a1, a2, a3, a4) = −1.

In 1979, G. G. Gundersen proved the following theorem, which improved
Theorem B.

Theorem C (see [7, Theorem 1]). Let f and g be two distinct nonconstant
meromorphic functions such that f and g share three values CM and share
a fourth value IM. Then f and g share all four values CM, and hence the
conclusion of Theorem B holds.

In 1989, G. Brosch proved the following theorem, which improved Theorem
B and Theorem C.

Theorem D (see [5]). Let f and g be two distinct nonconstant meromorphic
functions such that f and g share 0, 1 and ∞ CM, and let a and b be two
distinct complex numbers such that a, b 6∈ {0, 1}. If f − a and g− b share 0 IM,
then f is a Möbius transformation of g.

Regarding Theorem D, it is natural to ask the following two questions.
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Question 1.1 (see [9]). Is it really possible to relax in any way the nature of
sharing any one of 0, 1 and ∞ in Theorem D ?

Question 1.2. What can be said if a and b in Theorem D are replaced with
two distinct nonconstant polynomials P1 and P2 respectively ?

Recently many mathematicians in the world have done a lot of research
works concerning Question 1.1, such as T. C. Alzahary [2, 3], I. Lahiri and
P. Sahoo [11], X. M. Li and H. X. Yi [12], etc. In these research works, the
notion of weighted sharing of values has been used, which measures how close
a shared value is to being shared IM or to being shared CM. The notion is
explained in the following definition.

Definition 1.2 (see [10, Definition 4]). Let k be a nonnegative integer or
infinity. For any a ∈ C ∪ {∞}, we denote by Ek(a, f) the set of all a-points of
f, where an a-point of multiplicity m is counted m times if m ≤ k, and k + 1
times if m > k. If Ek(a, f) = Ek(a, g), we say that f, g share the value a with
weight k.

Remark 1.1. Definition 1.2 implies that if f, g share a value a with weight k,
then z0 is a zero of f − a with multiplicity m (≤ k) if and only if it is a zero
of g − a with multiplicity m (≤ k), and z0 is a zero of f − a with multiplicity
m (> k), if and only if it is a zero of g − a with multiplicity n (> k), where m
is not necessarily equal to n. Throughout this paper, we write f, g share (a, k)
to mean that f, g share the value a with weight k. Clearly, if f, g share (a, k),
then f, g share (a, p) for all integer p, 0 ≤ p < k. Also we note that f, g share
a value a IM or CM if and only if f, g share (a, 0) or (a,∞), respectively.

In this paper, we will prove the following two theorems that deals with
Question 1.2.

Theorem 1.1. Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0, 1, ∞ CM, and let P1 and P2 be two nonconstant
polynomials such that P1 6≡ P2. If f − P1 and g− P2 share 0 IM, then f and g
are transcendental meromorphic functions and satisfy one of the following three
relations: (i) f+g = 1 with P1+P2 = 1; (ii) f = P1

P2
·g; (iii) f = P1−1

P2−1 ·g+ P2−P1
P2−1 .

Theorem 1.2. Let f and g be two nonconstant entire functions that share
0 and 1 CM, and let P1 and P2 be two nonconstant polynomials such that
P1 6≡ P2. If f − P1 = 0 =⇒ g − P2 = 0, then f = g.

2. Some lemmas

Lemma 2.1 (see [7, Theorem 3]). Let f and g share 0, 1, ∞ IM. Then

(
1
3

+ o(1))T (r, g) < T (r, f) < (3 + o(1))T (r, g) (r 6∈ E).
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Lemma 2.2 (see [19, Lemma 2.6]). Let f and g be two distinct nonconstant
meromorphic functions that share (0, k1), (1, k2) and (∞, k3), where k1, k2 and
k3 are three positive integers satisfying

(2.1) k1 + k2 + k3 > k1k2k3 + 2.

Then (i) N (2(r, 1
f ) + N (2(r, 1

f−1 ) + N (2(r, f) = S(r, f);

(ii) N (2(r, 1
g ) + N (2(r, 1

g−1 ) + N (2(r, g) = S(r, f).

Lemma 2.3. Let f and g be two nonconstant rational functions that share
(0, k1), (1, k2) and (∞, k3), where k1, k2, k3 are three positive integers satisfying
(2.1). Then f = g.

Proof. Suppose that f 6≡ g. From the fact that f and g are two nonconstant
rational functions we have

(2.2) T (r, f) ≤ A1 log r, T (r, g) ≤ A2 log r,

where A1 and A2 are positive numbers. Let

(2.3) α1 =
f ′

f − 1
− g′

g − 1

and

(2.4) β1 =
f ′

f
− g′

g
.

From (2.3), (2.4) and Lemma 2.2 we get

(2.5) T (r, α1) + T (r, β1) = S(r, f),

which together with lim
r→∞
r 6∈E

S(r, f)/T (r, f) = 0 implies

(2.6) lim
r→∞
r 6∈E

T (r, α1) + T (r, β1)
T (r, f)

= 0.

From the fact that f and g are two nonconstant rational functions we see that
α1 and β1 are rational functions. Thus

(2.7) T (r, α1) + T (r, β1) = O(log r).

Suppose that one of α1 and β1 is not a constant. Then there exists some
positive number A3 such that

(2.8) T (r, α1) + T (r, β1) ≥ A3 log r.

From the left inequality of (2.2) and (2.8) we get

T (r, α1) + T (r, β1)
T (r, f)

≥ A3

A1
,
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which contradicts (2.6). Thus α1 and β1 are constants, say α1 = c1 and β1 = c2.
Then (2.3) and (2.4) can be rewritten as

(2.9)
f ′

f − 1
− g′

g − 1
= c1

and

(2.10)
f ′

f
− g′

g
= c2

respectively. From (2.9) and (2.10) we get

(2.11) f − 1 = A4(g − 1)

and

(2.12) f = A5g,

where A4 (6= 0) and A5 ( 6= 0) are two complex numbers. From (2.11) and (2.12)
we get A5g − 1 = A4(g − 1), which implies A4 = A5, and so it follows from
(2.11) and (2.12) that A4 = A5 = 1. Thus f = g, which contradicts the above
supposition. Lemma 2.3 is thus completely proved. ¤

Lemma 2.4 (see [18, Theorem 1.5]). If f is a transcendental meromorphic
function in the complex plane, then lim

r→∞
T (r, f)/log r = ∞.

Let f and g be two nonconstant meromorphic functions in the complex plane,
and a be a value in the extended plane. Let NE(r, a) “count” those points in
N(r, 1/(f−a)), where a is taken by f and g with the same multiplicity, and each
point is counted only once, and let N0(r, a) be the reduced counting function
of the common a-points of f and g in N(r, 1/(f − a)), where N(r, 1/(f −∞))
means N(r, f). We say that f and g share the value a CM*, if

N(r,
1

f − a
)−NE(r, a) = S(r, f)

and

N(r,
1

g − a
)−NE(r, a) = S(r, g).

We say that f and g share the value a IM*, if

N(r,
1

f − a
)−N0(r, a) = S(r, f)

and

N(r,
1

g − a
)−N0(r, a) = S(r, g).

The two notions can be found in [13] or [18]. If there exist four small functions
α1, α2, α3, α4 of f and g such that f = (α1g + α2)/(α3g + α4), where α1α4 −
α2α3 6≡ 0, then we say that f is a quasi-Möbius transformation of g (see [13]
or [18]).
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Lemma 2.5 (see [13, Theorem 3]). Let f and g be two distinct nonconstant
meromorphic functions that share 0, 1, ∞ CM*, and let a 6≡ 0, 1,∞ be a small
function of f and g. If T (r, f) 6= N(r, 1/(f − a)) + S(r, f), then f is a quasi-
Möbius transformation of g such that f and g satisfy one of the following three
relations: (i) f = ag; (ii) f +(a−1)g = a; (iii) (f−a)(g+a−1) = a(1−a).

Lemma 2.6 (see [1, Lemma 3]). Let f and g be two distinct nonconstant
meromorphic functions that share 0, 1, ∞ CM. If f is a Möbius transformation
of g, then f and g satisfy one of the following six relations.

(i) fg = 1; (ii) (f − 1)(g − 1) = 1;
(iii) f + g = 1; (iv) f = cg;
(v) f − 1 = c(g − 1); (vi) {(c− 1)f + 1} · {(c− 1)g − c} = −c;

where c 6= 0, 1 is a complex number.

Lemma 2.7 (see [18, Theorem 1.62]). Let f1, f2, . . . , fn be non-constant mero-
morphic functions, and let fn+1 ( 6≡ 0) be a meromorphic function such that∑n+1

j=1 fj = 1. If there exists a subset I ⊆ R+ satisfying mesI = ∞ such that

n+1∑

i=1

N(r,
1
fi

)+n

n+1∑
i=1
i 6=j

N(r, fi) < (λ+o(1))T (r, fj) (r →∞, r ∈ I, j =1, 2, . . . , n),

where λ < 1. Then fn+1 = 1.

Lemma 2.8. Let f and g be two transcendental meromorphic functions that
share 0, 1, ∞ CM, and let P be a nonconstant polynomial. If

(2.13) T (r, f) 6= N(r,
1

f − P
) + S(r, f),

then f = g.

Proof. Let f and g be distinct. First, from (2.13) and Lemma 2.5 we see that
f and g satisfy one of the three relations: f = Pg, f + (P − 1)g = P and
(f − P )(g + P − 1) = P (1− P ). By the condition that f and g share 0, 1, ∞
CM we have

(2.14)
f − 1
g − 1

= eα

and

(2.15)
f

g
= eα−β ,

where α and β are entire functions. From the supposition f 6≡ g we have
eα 6≡ 1, eβ 6≡ 1 and eα−β 6≡ 1. Combining (2.14) and (2.15), we get

(2.16) f =
eα − 1
eβ − 1
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and

(2.17) g =
e−α − 1
e−β − 1

.

If one of eα, eβ and eβ−α is a constant, from (2.14) and (2.15) we see that f
is a Möbius transformation of g. Thus f and g satisfy one of the six relations
(i)-(vi) of Lemma 2.6. From this we see that there exist two distinct Picard
exceptional values of f and g. This together with Nevanlinna’s three small
functions theorem (see [18, Theorem 1.36]) implies

(2.18) T (r, f) = N(r,
1

f − P
) + S(r, f),

which contradicts (2.13). Thus none of eα, eβ and eβ−α is a constant. If f and
g satisfy f = Pg, from (2.15) we have Peβ−α = 1, which is impossible. If f
and g satisfy

(2.19) f + (P − 1)g = P,

by substituting (2.16) and (2.17) into (2.19) we get

(2.20) eα − eβ + (1− P ) · eβ−α = 1− P.

Since none of eα, eβ and eβ−α is a constant, from (2.20) and Lemma 2.7 we
get a contradiction. If f and g satisfy

(2.21) (f − P )(g + P − 1) = P (1− P ),

by substituting (2.16) and (2.17) into (2.21) we get

(2.22) Peα+β − eβ + (1− P )eα − Pe2β + Pe2β−α + (1− P )eβ−α = 1− P.

If eα+β is a constant, then e2β−α is not a constant. This together with
(2.22) and Lemma 2.7 implies Peα+β = 1 − P, which is impossible. If e2β−α

is a constant, then eα+β is not a constant. This together with (2.22) and
Lemma 2.7 implies e2β−α = 1− P, which is impossible.

If eα+β and e2β−α are not constants, from (2.22) and Lemma 2.7 we also
get a contradiction. Lemma 2.8 is thus completely proved. ¤

Lemma 2.9 (see [14, Theorem 4.1]). Let f and g be two distinct nonconstant
meromorphic functions such that f and g share (0, k1), (1, k2) and (∞, k3),
where k1, k2 and k3 are three positive integers satisfying (2.1), and let a 6≡
0, 1,∞ be a nonconstant small meromorphic function of f and g. Then either
N(3(r, 1/(f − a)) + N(3(r, 1/(g − a)) = S(r, f) holds, or f and g satisfy one of
the three relations (i)-(iii) of Lemma 2.5.

Lemma 2.10 (see [13, Theorem 2]). Let f and g be two distinct nonconstant
meromorphic functions that share 0, 1, ∞ CM*, and let a ( 6≡ 0, 1,∞) and
b ( 6≡ 0, 1,∞) be two small functions of f and g such that a 6≡ b. If f − a and
g − b share 0 CM*, then f is a quasi-Möbius transformation of g.
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Lemma 2.11 (see [15, Lemma 2.6]). Let f and g be two distinct nonconstant
meromorphic functions such that f and g share 0, 1, ∞ IM. If f is a quasi-
Möbius transformation of g, then f and g assume one of the following six
relations.

(i) f · g = 1; (ii) (f − 1)(g − 1) = 1;
(iii) f + g = 1; (iv) f = cg;
(v) f − 1 = c(g − 1); (vi) [(c− 1)f + 1] · [(c− 1)g − c] = −c,

where c 6≡ 0, 1,∞ is a small function of f and g.

Lemma 2.12 (see [18, Theorem 2.14]). Let P1 and P2 be two nonconstant
polynomials, and let a and b be two distinct finite complex numbers. If P1 and
P2 share a and b IM, then P1 = P2.

Lemma 2.13 (see [20, Lemma 1]). Let h be a nonconstant entire function.
Then T (r, h′) = o(T (r, eh)) (r →∞, r 6∈ E).

Lemma 2.14 (see [22, Lemma 6]). Let f1 and f2 be two nonconstant mero-
morphic functions satisfying N(r, fj) + N(r, 1/fj) = S(r) (j = 1, 2). Then
either N0(r, 1; f1, f2) = S(r) or there exist two integers s, t (|s| + |t| > 0)
such that fs

1f t
1 ≡ 1, where and in what follows, N0(r, 1; f1, f2) denotes the

reduced counting function of f1 and f2 related to the common 1-points, and
T (r) = T (r, f1) + T (r, f2), S(r) = o(T (r))(r → ∞, r 6∈ E) only depending on
f1 and f2.

Lemma 2.15 (see [16]). Let f be a nonconstant meromorphic function, and let

F =
∑p

k=0 akfk

/ ∑q
j=0 bjf

j be an irreducible rational function in f, where

the coefficients {ak} and {bj} are small functions of f, and ap 6≡ 0, bq 6≡ 0.
Then T (r, F ) = d T (r, f) + S(r, f), where d = max {p, q}.
Lemma 2.16 (see [21, Corollary 2.2]). Let f and g be two distinct nonconstant
entire functions that share two distinct values CM. Then

lim
r→∞
r 6∈E

T (r, f)/T (r, g) = 1.

3. Proof of theorems

Proof of Theorem 1.1. Suppose that f 6≡ g. From Lemma 2.1 and the condition
that f and g share 0, 1, ∞ CM we see that f is a rational function if and only
if g is a rational function, and f is a transcendental meromorphic function
if and only if g is a transcendental meromorphic function. Suppose that f
and g are two rational functions. Then it follows from Lemma 2.3 that f =
g, which contradicts above supposition. Next we suppose that f and g are
two transcendental meromorphic functions. Then from Lemma 2.4 we have
T (r, P1) + T (r, P2) = o(T (r, f)), and so P1, P2 are small functions of f and
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g. From f 6≡ g and the assumptions of Theorem 1.1 we have (2.14)-(2.17).
Suppose that

(3.1) T (r, f) 6= N(r,
1

f − P1
) + S(r, f).

Then from (3.1) and Lemma 2.8 we get f = g, which contradicts the above
supposition. Similarly, if

T (r, g) 6= N(r,
1

g − P2
) + S(r, f),

then f = g, which contradicts the above supposition. Thus

(3.2) T (r, f) = N(r,
1

f − P1
) + S(r, f)

and

(3.3) T (r, g) = N(r,
1

g − P2
) + S(r, f).

If one of f = P1g, f + (P1 − 1)g = P1, (f − P1)(g + P1 − 1) = P1(1 − P1),
f = P2g, f +(P2− 1)g = P2 and (f −P2)(g +P2− 1) = P2(1−P2) holds, then
in the same manner as in the proof of Lemma 2.8 we get a contradiction. Thus
from Lemma 2.9 we get
(3.4)

N(3(r,
1

f − P1
) + N(3(r,

1
g − P1

) + N(3(r,
1

f − P2
) + N(3(r,

1
g − P2

) = S(r, f).

From (3.2), (3.3) and (3.4) we get

(3.5) T (r, f) = N2)(r,
1

f − P1
) + S(r, f)

and

(3.6) T (r, g) = N2)(r,
1

g − P2
) + S(r, f).

we discuss the following two cases.
Case 1. Suppose that

(3.7) N (1,2)(r, P1, P2) + N (2,1)(r, P1, P2) = S(r, f),

where and in what follows, N (l,k)(r, P1, P2) denotes the reduced counting func-
tion of those common zeros of f−P1 and g−P2, and each such common zero of
f−P1 and g−P2 is of f−P1 with multiplicity l, and of g−P2 with multiplicity
k. Then from (3.7) and the condition that f − P1 and g − P2 share 0 IM we
see that f − P1 and g − P2 share 0 CM*. This together with Lemma 2.10 and
the condition that f and g share 0, 1, ∞ CM implies that f is a quasi-Möbius
transformation of g. By Lemma 2.11, we discuss the following two subcases.

Subcase 1.1. Suppose that f and g satisfy one of the three relations (i),
(ii) and (vi) of Lemma 2.11. If f and g satisfy (i) of Lemma 2.11, from (3.5),
(3.6) and the fact that f − P1 and g − P2 share 0 CM* we get P1P2 = 1,
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which is impossible. Similarly, if f and g satisfy (ii) of Lemma 2.11 we get
(P1 − 1)(P2 − 1) = 1, which is impossible.

If f and g satisfy (vi) of Lemma 2.11, in the same manner as above we get

(3.8) {(c− 1)P1 + 1} · {(c− 1)P2 − c} = −c.

From (3.6) we get

(3.9) c =
P2(P1 − 1)
P1(P2 − 1)

.

By substituting (2.16) and (2.17) into (vi) of Lemma 2.11 we get

(3.10) (1− c)eβ − eα+β + ceα + e2β − e2β−α + ceβ−α = c.

If one of eα, eβ and eβ−α is a constant, then f is a Möbius transformation
of g such that f and g satisfy one of the six relations (i)-(vi) of Lemma 2.6.
From the above supposition and in the same manner as above we get (3.9) and
c is a nonzero constant. Thus P1 and P2 share 0, 1 CM. This together with
Lemma 2.12 gives P1 = P2, which is impossible. Thus none of eα, eβ and eβ−α

is a constant. If eα+β is a constant, then e2β−α is not a constant. This together
with (3.8), (3.10) and Lemma 2.7 gives eα+β = −{P2(P1 − 1)}/{P1(P2 − 1)},
which implies that eα+β is a nonzero complex number. Thus P1 and P2 share
0, 1 CM. This together with Lemma 2.12 implies that P1 = P2, which is
impossible. If e2β−α is a constant, then eα+β is not a constant. Proceeding as
above, we get e2β−α = −{P2(P1 − 1)}/{P1(P2 − 1)}, and so we get P1 = P2,
which is impossible.

Subcase 1.2. Suppose that f and g satisfy one of the three relations (iii),
(iv) and (v) of Lemma 2.11. Combining (3.5), (3.6) and the fact that f − P1

and g − P2 share 0 CM*, we get (i)-(iii) of Theorem 1.1.
Case 2. Suppose that

(3.11) N (1,2)(r, P1, P2) + N (2,1)(r, P1, P2) 6= S(r, f).

From (3.11) we see that at least one of the two inequalities N (2,1)(r, P1, P2) 6=
S(r, f) and N (1,2)(r, P1, P2) 6= S(r, f), say

(3.12) N (2,1)(r, P1, P2) 6= S(r, f)

holds. From (3.11) and (3.12) we will prove

(3.13) N (1,2)(r, P1, P2) = N (2,1)(r, P1, P2) + S(r, f).

In fact, from (2.16) and (2.17) we get

(3.14) f − P1 =
eα − P1e

β + P1 − 1
eβ − 1

,

(3.15) g − P2 =
e−α − P2e

−β + P2 − 1
e−β − 1
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and

(3.16) T (r, g) + T (r, eα) + T (r, eβ) = O(T (r, f)) (r 6∈ E).

From (3.16) and Lemma 2.13 we get

(3.17) T (r, α2) + T (r, β2) = S(r, f),

where and in what follows,

(3.18) α2 = α′ and β2 = β′.

If P1β2 − P1α2 + P ′1 = 0, from (3.18) we deduce that there exists a nonzero
complex number A6 such that eα−β = A6P1, which is impossible. Thus P1β2−
P1α2 + P ′1 6≡ 0. Similarly, we get (P1 − P 2

1 )β2 + P ′1 6≡ 0, P1β2 − P1α2 + P ′1 6≡ 0
and P ′1 + (1−P1)α2 6≡ 0. Let z0 be a zero of f −P1 with multiplicity 2, and of
g − P2 with multiplicity 1, such that z0 6∈ S1 ∪ S2 ∪ S3 ∪ S4, where

(3.19) S1 = {z : P1(z)β2(z)− P1(z)α2(z) + P ′1(z) = 0},

(3.20) S2 = {z : {P1(z)− P 2
1 (z)}β2(z) + P ′1(z) = 0},

(3.21) S3 = {z : P1(z)β2(z)− P1(z)α2(z) + P ′1(z) = 0}
and

(3.22) S4 = {z : P ′1(z) + {1− P1(z)}α2(z) = 0}.
From (3.14) we get

(3.23) eα(z0) − P1(z0)eβ(z0) + P1(z0)− 1 = 0

and

(3.24) α2(z0)eα(z0) − eβ(z0){P ′1(z0) + P1(z0) · β2(z0)}+ P ′1(z0) = 0.

From (3.23) and (3.24) we get

(3.25) eα(z0) =
{P1(z0)− P 2

1 (z0)}β2(z0) + P ′1(z0)
P1(z0)β2(z0)− P1(z0)α2(z0) + P ′1(z0)

and

(3.26) eβ(z0) =
P ′1(z0) + {1− P1(z0)}α2(z0)

P1(z0)β2(z0)− P1(z0)α2(z0) + P ′1(z0)
.

Let

(3.27) f1 =
(P1β2 − P1α2 + P ′1)e

α

(P1 − P 2
1 )β2 + P ′1

, f2 =
(P1β2 − P1α2 + P ′1)e

β

P ′1 + (1− P1)α2

and

(3.28) T (r) = T (r, f1) + T (r, f2), S(r) = o(T (r)) (r →∞, r 6∈ E).

From (3.16), (3.17), (3.27) and (3.28) we get

(3.29) S(r) = S(r, f)
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and

(3.30) N(r, fj) + N(r,
1
fj

) = S(r) (j = 1, 2).

From (3.25)-(3.27) we get f1(z0) = f2(z0) = 1, and so

(3.31) N (2,1)(r, P1, P2) ≤ N0(r, 1; f1, f2) + S(r).

From (3.12), (3.29) and (3.31) we get

(3.32) N0(r, 1; f1, f2) 6= S(r).

From (3.27), (3.29), (3.30), (3.32) and Lemma 2.14 we know that there exist
two integers s and t (|s|+ |t| > 0) such that

(3.33) fs
1 · f t

2 = 1.

From (2.14), (2.15), (3.16), (3.17), (3.27), (3.33) and Lemma 2.15 we get

(3.34) T (r, f) = T (r, g) + S(r, f).

Again from (2.14) and (2.15) we get

(3.35)
eβ(z0)

eα(z0)
=

P2(z0)
P1(z0)

,
1

eα(z0)
=

P2(z0)− 1
P1(z0)− 1

.

Since (3.24) can be rewritten as

(3.36) α2(z0)− eβ(z0)

eα(z0)
{P ′1(z0) + P1(z0) · β2(z0)}+

P ′1(z0)
eα(z0)

= 0.

From (3.35) and (3.36) we get

(3.37) α2(z0)− P2(z0)
P1(z0)

· {P ′1(z0) + P1(z0) · β2(z0)}+ P ′1(z0) · P2(z0)− 1
P1(z0)− 1

= 0.

From (3.12) and (3.37) we get

(3.38) α2 − P2(P ′1 + P1 · β2)
P1

+
(P2 − 1)P ′1

P1 − 1
= 0.

From (3.5), (3.6), (3.34) and the condition that f − P1 and g − P2 share 0 IM
we get

T (r, f)− T (r, g) = N2)(r,
1

f − P1
)−N2)(r,

1
g − P2

) + S(r, f)

= N (2,1)(r, P1, P2)−N (1,2)(r, P1, P2) = S(r, f),

namely
N (2,1)(r, P1, P2)−N (1,2)(r, P1, P2) = S(r, f),

which together with (3.12) implies

(3.39) N (2,1)(r, P1, P2) 6= S(r, f) and N (1,2)(r, P1, P2) 6= S(r, f).
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From (3.15), the right inequality of (3.39) and in the same manner as in the
proof of (3.38) we get

(3.40) −α2 − P1(P ′2 − P2β2)
P2

+
(P1 − 1)P ′2

P2 − 1
= 0.

By rewriting (3.38) and (3.40) we get

(3.41) α2 − P2β2 =
(1− P2)P ′1

P1 − 1
+

P2P
′
1

P1

and

(3.42) −α2 + P1β2 =
(1− P1)P ′2

P2 − 1
+

P1P
′
2

P2

respectively. From (3.18) we see that α2 and β2 are entire functions. Thus
from (3.41) and (3.42) we see that P1 and P2 share 0 and 1 IM. This together
with Lemma 2.12 implies P1 = P2, which is impossible. Theorem 1.1 is thus
completely proved. ¤

Proof of Theorem 1.2. Proceeding as in the beginning of the proof of Theo-
rem 1.1 we see that if f and g are polynomials, then the conclusion of Theo-
rem 1.2 holds. Next we suppose that f and g are two distinct transcendental
entire functions. Then we have (2.14)-(2.17). Proceeding as in the proof of
Theorem 1.1 we have (3.5) and (3.6). From Lemma 2.1 and Lemma 2.16 we
get

(3.43) T (r, f) = T (r, g) + S(r, f).

From (3.5), (3.6), (3.43) and the condition f−P1 = 0 =⇒ g−P2 = 0 we deduce
that f − P1 and g − P2 share 0 IM*. Next in the same manner as in Case 1
and Case 2 in the proof of Theorem 1.1 we get (i)-(iii) of Theorem 1.1.

If f and g satisfy (i) of Theorem 1.1, then 0 is a Picard exceptional value of
f and g. Thus f = eα3 and g = eβ3 , where α3 and β3 are entire functions. Thus
(i) of Theorem 1.1 can be rewritten as eα3 +eβ3 = 1. From this and Lemma 2.7
we get a contradiction.

If f and g satisfy (ii) of Theorem 1.1, then

(3.44) N(r,
1

f − 1
) + N(r,

1
f − P1/P2

) = S(r, f).

From (3.44) and Nevanlinna’s three small functions theorem we get

T (r, f) ≤ N(r,
1

f − 1
) + N(r,

1
f − P1/P2

) = S(r, f),

which is impossible.
If f and g satisfy (iii) of Theorem 1.1, then N(r, 1/f) = O(log r). Thus

(3.45) f = P3e
α4 and g = P4e

β4 ,
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where P3 and P4 are nonzero polynomials, α4 and β4 are nonconstant entire
functions. By substituting (3.45) into (iii) of Theorem 1.1 we get

(3.46) P3e
α4 − P4(P1 − 1)

P2 − 1
· eβ4 =

P2 − P1

P2 − 1
.

From (3.46) and Lemma 2.7 we get a contradiction. Theorem 1.2 is thus com-
pletely proved. ¤
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