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CONVERGENCE OF RELAXED TWO-STAGE
MULTISPLITTING METHOD USING AN OUTER SPLITTING

Jae Heon Yun

Abstract. In this paper, we study the convergence of relaxed two-stage
multisplitting method using H-compatible splittings or SOR multisplit-
ting as inner splittings and an outer splitting for solving a linear sys-
tem whose coefficient matrix is an H-matrix. We also provide numerical
experiments for the convergence of the relaxed two-stage multisplitting
method.

1. Introduction

In this paper, we consider relaxed two-stage multisplitting method for solv-
ing a linear system of the form

(1) Ax = b, x, b ∈ Rn,

where A ∈ Rn×n is a large sparse H-matrix. Multisplitting method was in-
troduced by O’Leary and White [5] and was further studied by many au-
thors [3, 4, 6, 8, 9]. The multisplitting method can be thought of as an extension
and parallel generalization of the classical block Jacobi method [2].

A matrix A = (aij) ∈ Rn×n is called monotone if A−1 ≥ 0. A matrix
A = (aij) ∈ Rn×n is called an M -matrix if A is monotone and aij ≤ 0 for i 6= j.
The comparison matrix 〈A〉 = (αij) of a matrix A = (aij) is defined by

αij =

{
|aij | if i = j

−|aij | if i 6= j.

A matrix A is called an H-matrix if 〈A〉 is an M -matrix. A representation
A = M − N is called a splitting of A when M is nonsingular. A splitting
A = M −N is called regular if M−1 ≥ 0 and N ≥ 0, weak regular if M−1 ≥ 0
and M−1N ≥ 0, M-splitting of A if M is an M -matrix and N ≥ 0, and H-
compatible splitting of A if 〈A〉 = 〈M〉 − |N |.
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A collection of triples (Mk, Nk, Ek), k = 1, 2, . . . , `, is called a multisplitting
of A if A = Mk − Nk is a splitting of A for k = 1, 2, . . . , `, and Ek’s, called
weighting matrices, are nonnegative diagonal matrices such that

∑`
k=1 Ek = I.

The relaxed two-stage multisplitting method with a relaxation parameter β > 0
using A = Mk −Nk as outer splittings and Mk = Bk − Ck as inner splittings
is as follows.

Algorithm 1: Relaxed Two-stage Multisplitting method

Given an initial vector x0

For i = 1, 2, . . . , until convergence
For k = 1 to `

yk,0 = xi−1

For j = 1 to s
yk,j = βBk

−1(Ckyk,j−1 + Nkxi−1 + b) + (1− β)yk,j−1

xi =
∑̀

k=1

Ekyk,s

In Algorithm 1, it is assumed to be s ≥ 1. Bru et al. [2] showed that if
0 < β ≤ 1, then Algorithm 1 converges for an H-matrix A under the assumption
that both the outer splittings A = Mk − Nk and the inner splittings Mk =
Bk − Ck are H-compatible splittings.

In 1991, Wang [8] studied the convergence of relaxed multisplitting method
associated with AOR multisplitting for solving the linear system (1). In this
paper, we study the convergence of relaxed two-stage multisplitting method
using H-compatible splittings or SOR multisplitting as inner splittings and an
outer splitting for solving the linear system (1). This paper is organized as
follows. In Section 2, we present some notation and well-known results. In
Section 3, we provide convergence results of relaxed two-stage multisplitting
method using H-compatible splittings or SOR multisplitting as inner splittings
and an outer splitting. In Section 4, we also provide numerical experiments for
the convergence of the relaxed two-stage multisplitting method.

2. Preliminaries

For a vector x ∈ Rn, x ≥ 0 (x > 0) denotes that all components of x are
nonnegative (positive). For two vectors x, y ∈ Rn, x ≥ y (x > y) means
that x − y ≥ 0 (x − y > 0). For a vector x ∈ Rn, |x| denotes the vector
whose components are the absolute values of the corresponding components
of x. These definitions carry immediately over to matrices. It follows that
|A| ≥ 0 for any matrix A and |AB| ≤ |A||B| for any two matrices A and B
of compatible size. Let diag(A) denote a diagonal matrix whose diagonal part
coincides with the diagonal part of A, and let ρ(A) denote the spectral radius
of a square matrix A. Varga [7] showed that for any square matrices A and B,
|A| ≤ B implies ρ(A) ≤ ρ(B). It is well-known that if A = M − N is a weak
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regular splitting, then A−1 ≥ 0 if and only if ρ(M−1N) < 1 [1, 7]. It was shown
that if A ≥ 0 and there exists a vector x > 0 and an α ≥ 0 such that Ax ≤ αx,
then ρ(A) ≤ α [1]. Frommer and Mayer [3] showed that |A−1| ≤ 〈A〉−1 when
A is an H-matrix.

Theorem 2.1 ([2]). Let A ∈ Rn×n be a monotone matrix. Assume that the
outer splittings A = Mk−Nk are regular and the inner splittings Mk = Bk−Ck

are weak regular. If 0 < β ≤ 1, then the relaxed two-stage multisplitting method
converges to the exact solution of Ax = b for any initial vector x0.

Theorem 2.2 ([2]). Let A ∈ Rn×n be an H-matrix. Assume that the outer
splittings A = Mk − Nk are H-compatible splittings and the inner splittings
Mk = Bk − Ck are H-compatible splittings. If 0 < β ≤ 1, then the relaxed
two-stage multisplitting method converges to the exact solution of Ax = b for
any initial vector x0.

The SOR multisplitting to be used in this paper is defined as follows.

Definition 1. Let 0 < ω < 2 and A = D − Lk − Uk for k = 1, 2, . . . , `, where
D = diag(A), Lk’s are strictly lower triangular matrices, and Uk’s are general
matrices. (Mk(ω), Nk(ω), Ek), k = 1, 2, . . . , `, is called the SOR multisplitting
of A if (Mk(ω), Nk(ω), Ek), k = 1, 2, . . . , `, is a multisplitting of A, Mk(ω) =
1
ω (D − ωLk), and Nk(ω) = 1

ω ((1− ω)D + ωUk).

If ω = 1 in Definition 1, then the SOR multisplitting of A is called the Gauss-
Seidel multisplitting of A. In this case, Mk(ω) = D − Lk and Nk(ω) = Uk.

3. Convergence results of relaxed two-stage multisplitting method

In this section, we consider convergence of relaxed two-stage multisplitting
method (Algorithm 1) with a relaxation parameter β > 0 using an outer split-
ting A = M − N and inner splittings M = Bk − Ck. Then, Algorithm 1 can
be written as xi = Hβxi−1 + Pβb, i = 1, 2, . . . , where

Hβ =
∑̀

k=1

Ek(Rβ,k)s + β
∑̀

k=1

Ek




s−1∑

j=0

(Rβ,k)j


B−1

k N,

Pβ = β
∑̀

k=1

Ek




s−1∑

j=0

(Rβ,k)j


B−1

k ,

where Rβ,k = βB−1
k Ck + (1 − β)I. The Hβ is called an iteration matrix for

the relaxed two-stage multisplitting method with a relaxation parameter β > 0
and s inner iterations. Then, it can be shown that PβA = I − Hβ and the
relaxed two-stage multisplitting method with a relaxation parameter β > 0
converges to the exact solution of Ax = b for any initial vector x0 if and only
if ρ(Hβ) < 1. First, we provide convergence result of the relaxed two-stage
multisplitting method using H-compatible splittings.
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Theorem 3.1. Let A ∈ Rn×n be an H-matrix and A = M − N be an H-
compatible splitting of A. Let M = Bk − Ck be an H-compatible splitting such
that diag(Bk) = diag(M) = D for each 1 ≤ k ≤ `, and let B = D − M .
Then, the relaxed two-stage multisplitting method using an outer splitting A =
M − N and inner splittings M = Bk − Ck, k = 1, 2, . . . , `, converges to the
exact solution of Ax = b for any initial vector x0 if 0 < β < 2

1+α , where
α = ρ(|D|−1(|B|+ |N |)).
Proof. For 0 < β ≤ 1, this theorem follows directly from Theorem 2.2. Now
we consider the case of 1 < β < 2

1+α . Let

Hβ =
∑̀

k=1

EkHβ,k , Hβ,k = (Rβ,k)s + β

s−1∑

j=0

(Rβ,k)jB−1
k N,

H̃β =
∑̀

k=1

EkH̃β,k , H̃β,k = (R̃β,k)s + β

s−1∑

j=0

(R̃β,k)j〈Bk〉−1|N |,

where Rβ,k = βB−1
k Ck + (1− β)I and R̃β,k = β〈Bk〉−1|Ck|+ (β − 1)I. Let

Ãβ,k =
2− β

β
〈Bk〉 − |Ck| − |N | and Ãβ =

2− β

β
|D| − |B| − |N |.

Notice that M and Bk are H-matrices since A = M − N and M = Bk − Ck

are H-compatible splittings. Since it can be easily shown that |Rβ,k| ≤ R̃β,k,
|Hβ,k| ≤ H̃β,k and thus

(2) |Hβ | ≤ H̃β .

Since diag(Bk) = diag(M) = D, 〈M〉 = |D| − |B| and 〈Bk〉 ≤ |D|. Since
〈A〉 = |D| − (|B|+ |N |) = 〈Bk〉 − (|Ck|+ |N |) are regular splittings of 〈A〉 and
〈Bk〉−1 ≥ |D|−1, ρ

(〈Bk〉−1(|Ck|+ |N |)) ≤ α < 1. Since β < 2
1+α , βα

2−β < 1
and thus I− R̃β,k = (2−β)I−β〈Bk〉−1|Ck| is nonsingular. Hence, one obtains

H̃β,k = (R̃β,k)s + β(I − (R̃β,k)s)(I − R̃β,k)−1〈Bk〉−1|N |
= I − (I − (R̃β,k)s)(I − β(I − R̃β,k)−1〈Bk〉−1|N |)
= I − (I − (R̃β,k)s)(I − R̃β,k)−1(I − R̃β,k − β〈Bk〉−1|N |)

= I −
s−1∑

j=0

(R̃β,k)j((2− β)I − β〈Bk〉−1|Ck| − β〈Bk〉−1|N |)

= I − β

s−1∑

j=0

(R̃β,k)j〈Bk〉−1

(
2− β

β
〈Bk〉 − |Ck| − |N |

)

= I − β

s−1∑

j=0

(R̃β,k)j〈Bk〉−1Ãβ,k.

(3)
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Let Ek = D − Bk for each k. Then 〈Bk〉 = |D| − |Ek| and |B| = |Ek| + |Ck|.
Since 1 < β < 2

1+α , one obtains

Ãβ,k =
2− β

β
〈Bk〉 − |Ck| − |N |

=
2− β

β
|D| − 2− β

β
|Ek| − |Ck| − |N |

≥ 2− β

β
|D| − |Ek| − |Ck| − |N |

=
2− β

β
|D| − |B| − |N |

= Ãβ

(4)

for each k. Since Ãβ = 2−β
β |D| − (|B| + |N |) is a regular splitting of Ãβ and

βα
2−β < 1, Ã−1

β ≥ 0. Since R̃β,k and 〈Bk〉−1 are nonnegative, from (3) and (4)
one obtains

(5) H̃β,k ≤ I − β

s−1∑

j=0

(R̃β,k)j〈Bk〉−1Ãβ .

Let e = (1, 1, . . . , 1)T and v = Ã−1
β e. Then v > 0 and 〈Bk〉−1e > 0. Using

these relations and (5),

(6) H̃β,kv ≤ v − β

s−1∑

j=0

(R̃β,k)j〈Bk〉−1e ≤ v − β〈Bk〉−1e < v.

From (6), there exists θβ,k ∈ [ 0, 1) such that

(7) H̃β,kv ≤ θβ,kv

for each k. Let θβ = max{θβ,k | 1 ≤ k ≤ `}. It is clear that θβ < 1. From (2)
and (7),

(8) |Hβ |v ≤ H̃βv =
∑̀

k=1

EkH̃β,kv ≤
∑̀

k=1

θβ,kEkv ≤ θβv.

From (8), ρ( |Hβ | ) ≤ θβ < 1 and hence ρ(Hβ) ≤ θβ < 1 for 1 < β < 2
1+α .

Therefore, the proof is complete. ¤

In Theorem 3.1, notice that 2
1+α > 1 since α < 1. It means that Theorem 3.1

can be viewed as an extension of Theorem 2.2. The following corollary for an
M -matrix A is directly obtained from Theorem 3.1

Corollary 3.2. Let A ∈ Rn×n be an M -matrix and A = M − N be an M -
splitting of A. Let M = Bk − Ck be an M -splitting such that diag(Bk) =
diag(M) = D for each 1 ≤ k ≤ `, and let B = D − M . Then, the relaxed
two-stage multisplitting method using an outer splitting A = M −N and inner
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splittings M = Bk − Ck, k = 1, 2, . . . , `, converges to the exact solution of
Ax = b for any initial vector x0 if 0 < β < 2

1+α , where α = ρ(D−1(B + N)).

We next provide convergence results of the relaxed two-stage multisplitting
method using SOR multisplitting.

Theorem 3.3. Let A ∈ Rn×n be an H-matrix and A = M − N be an H-
compatible splitting of A. Let M = D−B = D−Lk−Uk (1 ≤ k ≤ `) such that
〈M〉 = |D| − |Lk| − |Uk|, where D = diag(M), Lk is a strictly lower triangular
matrix, and Uk is a general matrix, and let (Bk(ω), Ck(ω), Ek), k = 1, 2, . . . , `,
be the SOR multisplitting of M . Let α = max{max{ρ (〈Bk(ω)〉−1|Ck(ω)|) | 1 ≤
k ≤ `}, ρ(|D|−1(|B|+|N |)) }. Then, the relaxed two-stage multisplitting method
using an outer splitting A = M −N and inner splittings M = Bk(ω)−Ck(ω),
k = 1, 2, . . . , `, converges to the exact solution of Ax = b for any initial vector
x0 if 0 < ω ≤ 1 and 0 < β < 2

2−ω(1−α) .

Proof. Notice that 〈Bk(ω)〉 = 1
ω (|D| − ω|Lk|) and |Ck(ω)| = 1

ω ((1 − ω)|D| +
ω|Uk|) for 0 < ω ≤ 1. It follows that M = Bk(ω)− Ck(ω) is an H-compatible
splitting of M , that is, 〈M〉 = 〈Bk(ω)〉− |Ck(ω)|. Since 〈A〉 = |D|− (|B|+ |N |)
and 〈M〉 = 〈Bk(ω)〉 − |Ck(ω)| are regular splittings, it is clear that α < 1. For
0 < ω ≤ 1 and 0 < β ≤ 1, this theorem follows directly from Theorem 2.2 since
both A = M −N and M = Bk(ω)− Ck(ω) are H-compatible splittings. Now
we consider the case of 0 < ω ≤ 1 and 1 < β < 2

2−ω(1−α) . Let

Rβ,ω,k = β(Bk(ω))−1Ck(ω) + (1− β)I,

R̃β,ω,k = β〈Bk(ω)〉−1|Ck(ω)|+ (β − 1)I,

Hβ,ω =
∑̀

k=1

EkHβ,ω,k, Hβ,ω,k = (Rβ,ω,k)s + β

s−1∑

j=0

(Rβ,ω,k)j(Bk(ω))−1N,

H̃β,ω =
∑̀

k=1

EkH̃β,ω,k, H̃β,ω,k = (R̃β,ω,k)s + β

s−1∑

j=0

(R̃β,ω,k)j〈Bk(ω)〉−1|N |.

Let

Ãβ,ω,k =
2− β

β
〈Bk(ω)〉−|Ck(ω)|−|N | and Ãβ,ω =

2− 2β + βω

βω
|D|−|B|−|N |.

Since Bk(ω) is an H-matrix, |(Bk(ω))−1| ≤ 〈Bk(ω)〉−1 and thus |Rβ,ω,k| ≤
R̃β,ω,k. It follows that

(9) |Hβ,ω| ≤ H̃β,ω.
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Since β < 2
2−ω(1−α) ≤ 2

1+α , βα
2−β < 1 and thus I − R̃β,ω,k = (2 − β)I −

β〈Bk(ω)〉−1|Ck(ω)| is nonsingular. Hence, one obtains

H̃β,ω,k = (R̃β,ω,k)s + β(I − (R̃β,ω,k)s)(I − R̃β,ω,k)−1〈Bk(ω)〉−1|N |
= I − (I − (R̃β,ω,k)s)(I − β(I − R̃β,ω,k)−1〈Bk(ω)〉−1|N |)
= I − (I − (R̃β,ω,k)s)(I − R̃β,ω,k)−1(I − R̃β,ω,k − β〈Bk(ω)〉−1|N |)

= I −
s−1X
j=0

(R̃β,ω,k)j((2− β)I − β〈Bk(ω)〉−1|Ck(ω)| − β〈Bk(ω)〉−1|N |)

= I − β

s−1X
j=0

(R̃β,ω,k)j〈Bk(ω)〉−1

„
2− β

β
〈Bk(ω)〉 − |Ck(ω)| − |N |

«

= I − β

s−1X
j=0

(R̃β,ω,k)j〈Bk(ω)〉−1Ãβ,ω,k.

(10)

Since β > 1 and |B| = |Lk|+ |Uk| for every k, one obtains

Ãβ,ω,k =
2− 2β + βω

βω
|D| − 2− β

β
|Lk| − |Uk| − |N |

≥ 2− 2β + βω

βω
|D| − |Lk| − |Uk| − |N |

=
2− 2β + βω

βω
|D| − |B| − |N |

= Ãβ,ω

(11)

for each k. Since β < 2
2−ω(1−α) , 2− 2β + βω > 0 and βωα

2−2β+βω < 1. It follows

that Ãβ,ω = 2−2β+βω
βω |D| − (|B| + |N |) is a regular splitting of Ãβ,ω and thus

Ã−1
β,ω ≥ 0. Since R̃β,ω,k and 〈Bk(ω)〉−1 are nonnegative, from (10) and (11) one

obtains

(12) H̃β,ω,k ≤ I − β

s−1∑

j=0

(R̃β,ω,k)j〈Bk(ω)〉−1Ãβ,ω.

Let e = (1, 1, . . . , 1)T and v = Ã−1
β,ωe. Then v > 0 and 〈Bk(ω)〉−1e > 0. Using

these relations and (12),

(13) H̃β,ω,kv ≤ v − β

s−1∑

j=0

(R̃β,ω,k)j〈Bk(ω)〉−1e ≤ v − β〈Bk(ω)〉−1e < v.

From (13), there exists a θβ,ω,k ∈ [ 0, 1) such that

(14) H̃β,ω,kv ≤ θβ,ω,kv
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for each k. Let θβ,ω = max{θβ,ω,k | 1 ≤ k ≤ `}. It is clear that θβ,ω < 1.
From (9) and (14),

(15) |Hβ,ω|v ≤ H̃β,ωv =
∑̀

k=1

EkH̃β,ω,kv ≤
∑̀

k=1

θβ,ω,kEkv ≤ θβ,ωv.

From (15), ρ( |Hβ,ω| ) ≤ θβ,ω < 1 and hence ρ(Hβ,ω) ≤ θβ,ω < 1 for 0 < ω ≤ 1
and 1 < β < 2

2−ω(1−α) . Therefore, the proof is complete. ¤

Theorem 3.4. Let A ∈ Rn×n be an H-matrix and A = M − N be an H-
compatible splitting of A. Let M = D − B = D − Lk − Uk (1 ≤ k ≤ `)
such that 〈M〉 = |D| − |Lk| − |Uk|, where D = diag(M), Lk is a strictly
lower triangular matrix, and Uk is a general matrix, and let (Bk(ω), Ck(ω), Ek),
k = 1, 2, . . . , `, be the SOR multisplitting of M . Let δ = ρ(|D|−1(|B| + |N |))
and α = max{δ, max{ρ (〈Bk(ω)〉−1|Ck(ω)|) | 1 ≤ k ≤ `}}. Let

Hβ,ω =
∑̀

k=1

Ek


(Rβ,ω,k)s + β

s−1∑

j=0

(Rβ,ω,k)j(Bk(ω))−1N




be an iteration matrix of the relaxed two-stage multisplitting method using an
outer splitting A = M − N and inner splittings M = Bk(ω) − Ck(ω), where
Rβ,ω,k = β(Bk(ω))−1Ck(ω) + (1− β)I. Then the following hold.

(a) If 1 < ω < 2
1+δ and 0 < β ≤ 1, then ρ(Hβ,ω) < 1.

(b) If ω > 1 is chosen so that ω(1 + α) < 2 and if 0 < β < 2
ω(1+α) , then

ρ(Hβ,ω) < 1.

Proof. Let M̂ = 〈Bk(ω)〉 − |Ck(ω)| for 1 < ω < 2
1+δ . Since 〈Bk(ω)〉 =

1
ω (|D|−ω|Lk|) and |Ck(ω)| = 1

ω ((ω − 1)|D|+ ω|Uk|), M̂ = 〈Bk(ω)〉−|Ck(ω)| =
2−ω

ω |D| − |B| are regular splittings of M̂ . Since ωδ
2−ω < 1, M̂ is an M -matrix

and thus α < 1. Let

R̂β,ω,k = β〈Bk(ω)〉−1|Ck(ω)|+ (1− β)I,

R̃β,ω,k = β〈Bk(ω)〉−1|Ck(ω)|+ (β − 1)I,

Ĥβ,ω =
∑̀

k=1

EkĤβ,ω,k, Ĥβ,ω,k = (R̂β,ω,k)s + β

s−1∑

j=0

(R̂β,ω,k)j〈Bk(ω)〉−1|N |,

H̃β,ω =
∑̀

k=1

EkH̃β,ω,k, H̃β,ω,k = (R̃β,ω,k)s + β

s−1∑

j=0

(R̃β,ω,k)j〈Bk(ω)〉−1|N |.

We first prove part (a). Let Â = M̂ − |N |. Then Â = M̂ − |N | = 2−ω
ω |D| −

(|B|+ |N |) are regular splittings of Â. Since ωδ
2−ω < 1, Â is also an M -matrix.

Since Ĥβ,ω can be viewed as an iteration matrix of the relaxed two-stage mul-
tisplitting method using an outer splitting Â = M̂ − |N | and inner splittings
M̂ = 〈Bk(ω)〉 − |Ck(ω)|, ρ(Ĥβ,ω) < 1 is obtained from Theorem 2.1. Since it
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can be easily shown that |Hβ,ω| ≤ Ĥβ,ω, ρ(Hβ,ω) < 1. Next we prove part (b).
Assume that ω > 1 is chosen so that ω(1 + α) < 2. Then ω(1 + δ) < 2. For
0 < β ≤ 1, ρ(Hβ,ω) < 1 is directly obtained from part (a). Now we consider
the case of 1 < β < 2

ω(1+α) . Let

Ãβ,ω,k =
2− β

β
〈Bk(ω)〉 − |Ck(ω)| − |N | and Ãβ,ω =

2− βω

βω
|D| − |B| − |N |.

Since Bk(ω) is an H-matrix, |Rβ,ω,k| ≤ R̃β,ω,k and thus |Hβ,ω| ≤ H̃β,ω. Since
ω > 1, β < 2

ω(1+α) < 2
(1+α) and so βα

2−β < 1. It follows that I − R̃β,ω,k =
(2− β)I − β〈Bk(ω)〉−1|Ck(ω)| is nonsingular. Hence, one obtains

(16) H̃β,ω,k = I − β

s−1∑

j=0

(R̃β,ω,k)j〈Bk(ω)〉−1Ãβ,ω,k.

Since β > 1 and |B| = |Lk|+ |Uk| for every k, one obtains

Ãβ,ω,k =
2− βω

βω
|D| − 2− β

β
|Lk| − |Uk| − |N |

≥ 2− βω

βω
|D| − |Lk| − |Uk| − |N |

=
2− βω

βω
|D| − |B| − |N |

= Ãβ,ω

(17)

for each k. Since β < 2
ω(1+α) , 2− βω > 0 and βωα

2−βω < 1. It follows that

Ãβ,ω = 2−βω
βω |D| − (|B|+ |N |) is a regular splitting of Ãβ,ω and thus Ã−1

β,ω ≥ 0.
Since R̃β,ω,k and 〈Bk(ω)〉−1 are nonnegative, from (16) and (17) one obtains

(18) H̃β,ω,k ≤ I − β

s−1∑

j=0

(R̃β,ω,k)j〈Bk(ω)〉−1Ãβ,ω.

Let e = (1, 1, . . . , 1)T and v = Ã−1
β,ωe. Then v > 0 and 〈Bk(ω)〉−1e > 0. Using

these relations and (18),

(19) H̃β,ω,kv ≤ v − β

s−1∑

j=0

(R̃β,ω,k)j〈Bk(ω)〉−1e ≤ v − β〈Bk(ω)〉−1e < v.

The remaining part of the proof can be done in a similar way as was done in
that of Theorem 3.3. Hence, ρ(Hβ,ω) < 1 is obtained for 1 < β < 2

ω(1+α) .
Therefore, the proof is complete. ¤

Notice that 1 < 2
1+α ≤ 2

1+δ in Theorem 3.4. The following theorem is
directly obtained by combining Theorems 3.3 and 3.4.
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Theorem 3.5. Let A ∈ Rn×n be an H-matrix and A = M − N be an H-
compatible splitting of A. Let M = D − B = D − Lk − Uk (1 ≤ k ≤ `)
such that 〈M〉 = |D| − |Lk| − |Uk|, where D = diag(M), Lk is a strictly
lower triangular matrix, and Uk is a general matrix, and let (Bk(ω), Ck(ω), Ek),
k = 1, 2, . . . , `, be the SOR multisplitting of M . Let δ = ρ(|D|−1(|B| + |N |))
and α = max{δ, max{ρ (〈Bk(ω)〉−1|Ck(ω)|) | 1 ≤ k ≤ `}}. Let

Hβ,ω =
∑̀

k=1

Ek


(Rβ,ω,k)s + β

s−1∑

j=0

(Rβ,ω,k)j(Bk(ω))−1N




be an iteration matrix of the relaxed two-stage multisplitting method using an
outer splitting A = M − N and inner splittings M = Bk(ω) − Ck(ω), where
Rβ,ω,k = β(Bk(ω))−1Ck(ω) + (1− β)I. Then the following hold.

(a) If 1 < ω < 2
1+δ and 0 < β ≤ 1, then ρ(Hβ,ω) < 1.

(b) If ω > 0 is chosen so that ω(1 + α) < 2 and if 0 < β < 2
1+ωα+|1−ω| ,

then ρ(Hβ,ω) < 1.

In Theorem 3.5, notice that if 0 < ω ≤ 1, then the condition ω(1 + α) < 2
in part (b) is automatically satisfied from the fact that α < 1. Also notice
that the upper bound of β, which is 2

1+ωα+|1−ω| , is greater than 1 when ω(1 +
α) < 2. The following corollary for an M -matrix A is directly obtained from
Theorem 3.5.

Corollary 3.6. Let A ∈ Rn×n be an M -matrix and A = M − N be an M -
splitting of A. Let M = D−B = D−Lk−Uk (1 ≤ k ≤ `), where D = diag(M),
Lk ≥ 0 is a strictly lower triangular matrix, and Uk ≥ 0 is a general matrix,
and let (Bk(ω), Ck(ω), Ek), k = 1, 2, . . . , `, be the SOR multisplitting of M . Let
δ = ρ(D−1(B +N)) and α = max{δ, max{ρ (

(Bk(ω))−1|Ck(ω)|) | 1 ≤ k ≤ `}}.
Let

Hβ,ω =
∑̀

k=1

Ek


(Rβ,ω,k)s + β

s−1∑

j=0

(Rβ,ω,k)j(Bk(ω))−1N




be an iteration matrix of the relaxed two-stage multisplitting method using an
outer splitting A = M − N and inner splittings M = Bk(ω) − Ck(ω), where
Rβ,ω,k = β(Bk(ω))−1Ck(ω) + (1− β)I. Then the following hold.

(a) If 1 < ω < 2
1+δ and 0 < β ≤ 1, then ρ(Hβ,ω) < 1.

(b) If ω > 0 is chosen so that ω(1 + α) < 2 and if 0 < β < 2
1+ωα+|1−ω| ,

then ρ(Hβ,ω) < 1.

4. Numerical experiments

In this section, we provide numerical experiments for the convergence of
the relaxed two-stage multisplitting method using SOR multisplitting as inner
splittings. All numerical values are computed using MATLAB.
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Example 4.1. Suppose that ` = 3. Consider an H-matrix A of the form

A =




F I 0
−I F I

0 −I F


 , F =




4 −1 0
1 4 −1
0 1 4


 , I =




1 0 0
0 1 0
0 0 1


 .

Let A = M −N , where

M =




F 0 0
0 F 0
0 0 F


 , N =




0 −I 0
I 0 −I
0 I 0


 .

Let D = diag(M), B = D −M ,

L11 =




0 0 0
−1 0 0

0 0 0


 , U11 =




0 1 0
0 0 1
0 −1 0


 ,

L12 =




0 0 0
−1 0 0

0 −1 0


 , U12 =




0 1 0
0 0 1
0 0 0


 ,

L1 =

0
@

L11 0 0
0 L12 0
0 0 L12

1
A , L2 =

0
@

L12 0 0
0 L11 0
0 0 L12

1
A , L3 =

0
@

L12 0 0
0 L12 0
0 0 L11

1
A ,

U1 =

0
@

U11 0 0
0 U12 0
0 0 U12

1
A , U2 =

0
@

U12 0 0
0 U11 0
0 0 U12

1
A , U3 =

0
@

U12 0 0
0 U12 0
0 0 U11

1
A ,

E1 =




I 0 0
0 0 0
0 0 0


 , E2 =




0 0 0
0 I 0
0 0 0


 , E3 =




0 0 0
0 0 0
0 0 I


 .

Then, A = M − N is an H-compatible splitting of A and M = D − Lk − Uk

is such that 〈M〉 = |D| − |Lk| − |Uk| for k = 1, 2, 3. Let (Bk(ω), Ck(ω), Ek),
k = 1, 2, 3, be the SOR multisplitting of M . That is, Bk(ω) = 1

ω (D−ωLk) and
Ck(ω) = 1

ω ((1− ω)D + ωUk) for k = 1, 2, 3. Then δ, α and Hβ,ω are defined as
in Theorem 3.5. Note that δ = ρ(|D|−1(|B|+ |N |)) ≈ 0.7071 and 2

1+δ ≈ 1.1716.
For various values of ω, the numerical values of α, ω(1 + α) and 2

1+ωα+|1−ω|
are listed in Table 1. Numerical values of ρ(Hβ,ω) for various values of ω, β
and s are listed in Table 2.

We next consider the more general case where A is a large sparse block-
tridiagonal H-matrix which is usually constructed from five-point finite dif-
ference discretization of the elliptic second order partial differential equations.
For simplicity of exposition, suppose that ` = 3. Then A can be partitioned
into an `× ` block-tridiagonal matrix of the form

A =




A11 A12 0
A21 A22 A23

0 A32 A33


 ,
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where Aii is a square matrix for i = 1, 2, 3. Let A = M −N , where

M =




A11 0 0
0 A22 0
0 0 A33


 , N =




0 −A12 0
−A21 0 −A23

0 −A32 0


 .

Let Aii = Dii −Lii −Uii for i = 1, 2, 3, where Dii = diag(Aii), Lii is a strictly
lower triangular matrix and Uii is a strictly upper triangular matrix. Let

L1 =




0 0 0
0 L22 0
0 0 L33


 , L2 =




L11 0 0
0 0 0
0 0 L33


 , L3 =




L11 0 0
0 L22 0
0 0 0


 ,

U1 =




L11 + U11 0 0
0 U22 0
0 0 U33


 , U2 =




U11 0 0
0 L22 + U22 0
0 0 U33


 ,

U3 =




U11 0 0
0 U22 0
0 0 L33 + U33


 , D =




D11 0 0
0 D22 0
0 0 D33


 ,

E1 =




I 0 0
0 0 0
0 0 0


 , E2 =




0 0 0
0 I 0
0 0 0


 , E3 =




0 0 0
0 0 0
0 0 I


 .

Then, A = M − N is an H-compatible splitting of A and M = D − Lk − Uk

is such that 〈M〉 = |D| − |Lk| − |Uk| for k = 1, 2, 3. Let (Bk(ω), Ck(ω), Ek),
k = 1, 2, 3, be the SOR multisplitting of M . That is, Bk(ω) = 1

ω (D−ωLk) and
Ck(ω) = 1

ω ((1− ω)D + ωUk) for k = 1, 2, 3. Using the ideas and techniques
mentioned above, we provide numerical results for the following example.

Example 4.2. Consider the following Poisson PDE

(20)

{
−uxx − uyy = g in Ω
u(x, y) = 0 on ∂Ω,

where Ω = (0, 1)×(0, 1) and ∂Ω denotes the boundary of Ω. The five-point finite
difference discretization for the PDE (20) is used. We have used a uniform mesh
of ∆x = ∆y = 1/46, which lead to a block-tridiagonal H-matrix A of order
n = 452 = 2025, where ∆x and ∆y refer to the mesh sizes in the x-direction and
y-direction, respectively. δ, α and Hβ,ω are defined as in Theorem 3.5. Note
that δ = ρ(|D|−1(|B|+ |N |)) ≈ 0.9977 and 2

1+δ ≈ 1.0012 for this example. For
various values of ω, the numerical values of α, ω(1 + α) and 2

1+ωα+|1−ω| are
listed in Table 3. Numerical values of ρ(Hβ,ω) for various values of ω, β and s
are listed in Table 4.

For test problems used in this paper, the upper bound of β, which is
2

1 + ωα + |1− ω| ,
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becomes maximum when ω = 1 (see Tables 1 and 3). All numerical results are
consistent with the theoretical results provided in this paper (see Tables 1 to
4). From Tables 2 and 4, it may be concluded that the optimal pairs of β and
ω for which ρ(Hβ,ω) is minimized vary depending upon s and the problem to
be considered.

Table 1. Numerical values of α, ω(1 + α) and 2
1+ωα+|1−ω| for Example 4.1.

ω α ω(1 + α) 2
1+ωα+|1−ω|

0.2 0.8683 0.3737 1.0133
0.3 0.8006 0.5402 1.0308
0.4 0.7316 0.6926 1.0567
0.5 0.7071 0.8536 1.0790
0.8 0.7071 1.3657 1.1327
0.9 0.7071 1.5364 1.1518
1.0 0.7071 1.7071 1.1716
1.1 0.7071 1.8778 1.0651
1.15 0.7071 1.9632 1.0188
1.17 0.7071 1.9973 1.0013
1.18 0.7071 2.0144 0.9929

Table 2. Numerical values of ρ(Hβ,ω) for Example 4.1.

s ω β ρ(Hβ,ω) s ω β ρ(Hβ,ω) s ω β ρ(Hβ,ω)

1 0.2 0.8 0.8452 2 0.2 0.8 0.7226 3 0.2 0.8 0.6275
1.0 0.8093 1.0 0.6688 1.0 0.5688
1.01 0.8075 1.01 0.6662 1.01 0.5662

0.5 0.8 0.6432 0.5 0.8 0.4821 0.5 0.8 0.4204
1.0 0.5851 1.0 0.4504 1.0 0.4084
1.07 0.5696 1.07 0.4455 1.07 0.4060

0.8 0.6 0.5775 0.8 0.6 0.4353 0.8 0.6 0.3958
0.8 0.5160 0.8 0.4236 0.8 0.3858
1.0 0.5257 1.0 0.4224 1.0 0.3574
1.13 0.5696 1.13 0.4069 1.13 0.3532

1.0 0.6 0.5079 1.0 0.6 0.4110 1.0 0.6 0.3826
0.8 0.5042 0.8 0.4118 0.8 0.3542
1.0 0.6101 1.0 0.3646 1.0 0.3536
1.17 0.7538 1.17 0.4511 1.17 0.3553

1.1 0.6 0.4838 1.1 0.6 0.4067 1.1 0.6 0.3745
0.8 0.5243 0.8 0.3953 0.8 0.3529
1.0 0.6810 1.0 0.4065 1.0 0.3539
1.06 0.7412 1.06 0.4448 1.06 0.3552

1.15 0.6 0.4751 1.15 0.6 0.4051 1.15 0.6 0.3696
0.8 0.5406 0.8 0.3827 0.8 0.3534
1.0 0.7218 1.0 0.4335 1.0 0.3548
1.01 0.7326 1.01 0.4402 1.01 0.3551
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Table 3. Numerical values of α, ω(1 + α) and 2
1+ωα+|1−ω| for Example 4.2.

ω α ω(1 + α) 2
1+ωα+|1−ω|

0.2 0.9978 0.3996 1.0002
0.5 0.9977 0.9988 1.0006
0.8 0.9977 1.5981 1.0009
1.0 0.9977 1.9977 1.0012

1.001 0.9977 1.9997 1.0002
1.002 0.9977 2.0017 0.9992

Table 4. Numerical values of ρ(Hβ,ω) for Example 4.2.
s ω β ρ(Hβ,ω) s ω β ρ(Hβ,ω) s ω β ρ(Hβ,ω)
1 0.2 0.8 0.9996 2 0.2 0.8 0.9993 3 0.2 0.8 0.9989

1.0 0.9995 1.0 0.9991 1.0 0.9986
1.0001 0.9995 1.0001 0.9991 1.0001 0.9986

0.5 0.8 0.9991 0.5 0.8 0.9981 0.5 0.8 0.9972
1.0 0.9988 1.0 0.9977 1.0 0.9966

1.0005 0.9988 1.0005 0.9977 1.0005 0.9966
0.8 0.6 0.9989 0.8 0.6 0.9978 0.8 0.6 0.9967

0.8 0.9985 0.8 0.9971 0.8 0.9956
1.0 0.9981 1.0 0.9963 1.0 0.9946

1.0008 0.9981 1.0008 0.9963 1.0008 0.9946
1.0 0.6 0.9986 1.0 0.6 0.9972 1.0 0.6 0.9959

0.8 0.9981 0.8 0.9963 0.8 0.9946
1.0 0.9977 1.0 0.9954 1.0 0.9933

1.0011 0.9999 1.0011 0.9954 1.0011 0.9933
1.001 0.6 0.9986 1.001 0.6 0.9972 1.001 0.6 0.9959

0.8 0.9981 0.8 0.9963 0.8 0.9946
1.0 0.9997 1.0 0.9954 1.0 0.9933

1.0001 0.9999 1.0001 0.9954 1.0001 0.9933
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