GEOMETRY OF SCREEN CONFORMAL REAL HALF LIGHTLIKE SUBMANIFOLDS

Dae Ho Jin

Abstract

In this paper, we study the geometry of real half lightlike submanifolds of an indefinite Kaehler manifold. The main result is a characterization theorem for screen conformal real half lightlike submanifolds of an indefinite complex space form.

1. Introduction

It is well known that the radical distribution $\operatorname{Rad}(T M)=T M \cap T M^{\perp}$ of the lightlike submanifolds M of a semi-Rimannian manifold (\bar{M}, \bar{g}) of codimension 2 is a vector subbundle of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$, of rank 1 or 2 . The codimension 2 lightlike submanifold (M, g) is called a half lightlike submanifold if $\operatorname{rank}(\operatorname{Rad}(T M))=1$. In this case, there exists two complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ in $T M$ and $T M^{\perp}$ respectively, called the screen and co-screen distribution on M. Then we have the following two orthogonal decompositions

$$
\begin{equation*}
T M=\operatorname{Rad}(T M) \oplus_{\text {orth }} S(T M), T M^{\perp}=\operatorname{Rad}(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right) \tag{1.1}
\end{equation*}
$$

where the symbol $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a half lightlike submanifold by $(M, g, S(T M))$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. Choose $L \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ as a unit vector field with $\bar{g}(L, L)=\epsilon= \pm 1$. Consider the orthogonal complementary distribution $S(T M)^{\perp}$ to $S(T M)$ in $T \bar{M}$. Certainly ξ and L belong to $\Gamma\left(S(T M)^{\perp}\right)$. Hence we have the following orthogonal decomposition

$$
S(T M)^{\perp}=S\left(T M^{\perp}\right) \oplus_{\text {orth }} S\left(T M^{\perp}\right)^{\perp}
$$

where $S\left(T M^{\perp}\right)^{\perp}$ is the orthogonal complementary to $S\left(T M^{\perp}\right)$ in $S(T M)^{\perp}$. We known [3] that, for any smooth null section ξ of $\operatorname{Rad}(T M)$ on a coordinate

[^0]neighborhood $\mathcal{U} \subset M$, there exists a uniquely defined null vector field $N \in$ $\Gamma(\operatorname{ltr}(T M))$ satisfying
\[

$$
\begin{equation*}
\bar{g}(\xi, N)=1, \bar{g}(N, N)=\bar{g}(N, X)=\bar{g}(N, L)=0, \forall X \in \Gamma(S(T M)) \tag{1.2}
\end{equation*}
$$

\]

We call $N, \operatorname{ltr}(T M)$ and $\operatorname{tr}(T M)=S\left(T M^{\perp}\right) \oplus_{\text {orth }} \operatorname{ltr}(T M)$ the lightlike transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to the screen $S(T M)$ respectively. Therefore the tangent bundle $T \bar{M}$ of the ambient manifold \bar{M} is decomposed as follows:

$$
\begin{align*}
T \bar{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M) \tag{1.3}\\
& =\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\} \oplus_{\text {orth }} S(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right)
\end{align*}
$$

The objective of this paper is to study the geometry of real half lightlike submanifolds of an indefinite Kaehler manifold. First of all, we prove that such a real half lightlike submanifold M is a CR lightlike submanifold (Theorem 2.1) and if the induced structure tensor F on M is parallel, then M is locally a product manifold $M_{2} \times M^{\sharp}$, where M_{2} and M^{\sharp} are leaves of some integrable distributions (Theorem 2.2). Next, we prove a characterization theorem for real half lightlike submanifolds M of an indefinite complex space form $\bar{M}(c)$: If M is screen conformal, then $c=0$ (Theorem 3.5). Using this theorem, we prove several additional theorems for screen conformal real half lightlike submanifolds M of an indefinite complex space form $\bar{M}(c)$: If M is totally umbilical or an Einstein manifold, then M is Ricci flat (Theorems 4.3 and 4.4). If the conformal factor is a non-zero constant and the co-screen distribution is parallel, then M is locally a product manifold $M_{2}^{\prime} \times M^{\hbar}$, where M_{2}^{\prime} and M^{\hbar} are leaves of some integrable distributions of M (Theorems 4.6 and 4.7).

Let $\bar{\nabla}$ be the Levi-Civita connection of \bar{M} and P the projection morphism of $\Gamma(T M)$ on $\Gamma(S(T M))$ with respect to the decomposition (1.1). Then the local Gauss and Weingarten formulas are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N+D(X, Y) L \tag{1.4}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N+\rho(X) L \tag{1.5}\\
& \bar{\nabla}_{X} L=-A_{L} X+\phi(X) N \tag{1.6}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi \tag{1.7}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi \tag{1.8}
\end{align*}
$$

for all $X, Y \in \Gamma(T M)$, where ∇ and ∇^{*} are induced linear connections of M and on $S(T M)$ respectively, B and D are called the local second fundamental forms of M, C is called the local second fundamental form on $S(T M)$. A_{N}, A_{ξ}^{*} and A_{L} are linear operators on $T M$ and τ, ρ and ϕ are 1-forms on $T M$. Since $\bar{\nabla}$ is torsion-free, ∇ is also torsion-free and both B and D are symmetric. From the facts $B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$ and $D(X, Y)=\epsilon \bar{g}\left(\bar{\nabla}_{X} Y, L\right)$, we know that B and D are independent of the choice of a screen distribution and

$$
\begin{equation*}
B(X, \xi)=0, \quad D(X, \xi)=-\epsilon \phi(X), \forall X \in \Gamma(T M) \tag{1.9}
\end{equation*}
$$

The induced connection ∇ of M is not metric and satisfies

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{1.10}
\end{equation*}
$$

for all $X, Y, Z \in \Gamma(T M)$, where η is a 1-form on $T M$ such that

$$
\begin{equation*}
\eta(X)=\bar{g}(X, N), \forall X \in \Gamma(T M) \tag{1.11}
\end{equation*}
$$

But the connection ∇^{*} on $S(T M)$ is metric. Above three local second fundamental forms of M and $S(T M)$ are related to their shape operators by

$$
\begin{array}{lc}
B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), & \bar{g}\left(A_{\xi}^{*} X, N\right)=0 \\
C(X, P Y)=g\left(A_{N} X, P Y\right), & \bar{g}\left(A_{N} X, N\right)=0 \\
\epsilon D(X, P Y)=g\left(A_{L} X, P Y\right), & \bar{g}\left(A_{L} X, N\right)=\epsilon \rho(X), \\
\epsilon D(X, Y)=g\left(A_{L} X, Y\right)-\phi(X) \eta(Y), \forall X, Y \in \Gamma(T M) . \tag{1.15}
\end{array}
$$

By (1.12) and (1.13), we show that A_{ξ}^{*} and A_{N} are $\Gamma(S(T M))$-valued shape operators related to B and C respectively and A_{ξ}^{*} is self-adjoint on $T M$ and

$$
\begin{equation*}
A_{\xi}^{*} \xi=0 \tag{1.16}
\end{equation*}
$$

that is, ξ is an eigenvector field of A_{ξ}^{*} corresponding to the eigenvalue 0 . But A_{N} and A_{L} are not self-adjoint on $S(T M)$ and $T M$ respectively.

We denote by \bar{R}, R and R^{*} the curvature tensors of the Levi-Civita connection $\bar{\nabla}$ of \bar{M}, the induced connection ∇ of M and the induced connection ∇^{*} on $S(T M)$ respectively. Using the Gauss-Weingarten equations for M and $S(T M)$, we obtain the Gauss-Codazzi equations for M and $S(T M)$:
(1.17) $\bar{g}(\bar{R}(X, Y) Z, P W)=g(R(X, Y) Z, P W)$

$$
\begin{aligned}
& +B(X, Z) C(Y, P W)-B(Y, Z) C(X, P W) \\
& +\epsilon\{D(X, Z) D(Y, P W)-D(Y, Z) D(X, P W)\}
\end{aligned}
$$

$$
\begin{equation*}
\bar{g}(\bar{R}(X, Y) Z, \xi)=\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z) \tag{1.18}
\end{equation*}
$$

$+B(Y, Z) \tau(X)-B(X, Z) \tau(Y)$
$+D(Y, Z) \phi(X)-D(X, Z) \phi(Y)$,

$$
\begin{align*}
\bar{g}(\bar{R}(X, Y) Z, N)= & \bar{g}(R(X, Y) Z, N) \tag{1.19}\\
& +\epsilon\{D(X, Z) \rho(Y)-D(Y, Z) \rho(X)\} \\
\bar{g}(\bar{R}(X, Y) \xi, N)= & g\left(A_{\xi}^{*} X, A_{N} Y\right)-g\left(A_{\xi}^{*} Y, A_{N} X\right) \tag{1.20}\\
& -2 d \tau(X, Y)+\rho(X) \phi(Y)-\rho(Y) \phi(X)
\end{align*}
$$

$$
\begin{align*}
\bar{g}(R(X, Y) P Z, P W)= & g\left(R^{*}(X, Y) P Z, P W\right) \tag{1.21}\\
& +C(X, P Z) B(Y, P W)-C(Y, P Z) B(X, P W)
\end{align*}
$$

(1.22) $g(R(X, Y) P Z, N)=\left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z)$

$$
+C(X, P Z) \tau(Y)-C(Y, P Z) \tau(X)
$$

The Ricci tensor, denoted by $\overline{R i c}$, of \bar{M} is defined by

$$
\begin{equation*}
\overline{\operatorname{Ric}}(X, Y)=\operatorname{trace}\{Z \rightarrow \bar{R}(Z, X) Y\}, \forall X, Y \in \Gamma(T \bar{M}) \tag{1.23}
\end{equation*}
$$

In case Ricci tensor vanishes on \bar{M}, we say that \bar{M} is Ricci flat. If $\operatorname{dim} \bar{M}>2$ and $\overline{\text { Ric }}=\bar{\gamma} g$, where γ is a constant, then \bar{M} is called an Einstein manifold. For $\operatorname{dim} \bar{M}=2$, any \bar{M} is Einstein but $\bar{\gamma}$ is not necessarily constant.

2. Real half lightlike submanifolds

Let $\bar{M}=(\bar{M}, J, \bar{g})$ be a real $2 m$-dimensional indefinite Kaehler manifold, where \bar{g} is a semi-Riemannian metric of index $q=2 v, 0<v<m$ and J is an almost complex structure on \bar{M} satisfying, for all $X, Y \in \Gamma(T \bar{M})$,

$$
\begin{equation*}
J^{2}=-I, \quad \bar{g}(J X, J Y)=\bar{g}(X, Y), \quad\left(\bar{\nabla}_{X} J\right) Y=0 \tag{2.1}
\end{equation*}
$$

Definition 1. Let $(M, g, S(T M))$ be a real lightlike submanifold of an indefinite Kaehler manifold \bar{M}. We say that M is a CR-lightlike submanifold [3] of \bar{M} if the following two conditions are fulfilled:
(A) $J(\operatorname{Rad}(T M))$ is a distribution on M such that

$$
\operatorname{Rad}(T M) \cap J(\operatorname{Rad}(T M))=\{0\}
$$

(B) There exist vector bundles H_{o} and H^{\prime} over M such that
$S(T M)=\left\{J(\operatorname{Rad}(T M)) \oplus H^{\prime}\right\} \oplus_{\text {orth }} H_{o} ; J\left(H_{o}\right)=H_{o} ; J\left(H^{\prime}\right)=K_{1} \oplus_{\text {orth }} K_{2}$, where H_{o} is a non-degenerate almost complex distribution on M, and K_{1} and K_{2} are vector subbundles of $\operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$ respectively.

An indefinite complex space form $\bar{M}(c)$ is a connected indefinite Kaehler manifold of constant holomorphic sectional curvature c such that

$$
\begin{align*}
\bar{R}(X, Y) Z= & \frac{c}{4}\{\bar{g}(Y, Z) X-\bar{g}(X, Z) Y+\bar{g}(J Y, Z) J X \tag{2.2}\\
& -\bar{g}(J X, Z) J Y+2 \bar{g}(X, J Y) J Z\}, \forall X, Y, Z \in \Gamma(T M) .
\end{align*}
$$

Theorem 2.1. Any real half lightlike submanifold ($M, g, S(T M)$) of an indefinite Kaehler manifold \bar{M} is a CR-lightlike submanifold of \bar{M}.

Proof. From the fact that $\bar{g}(J \xi, \xi)=0$ and $\operatorname{Rad}(T M) \cap J(\operatorname{Rad}(T M))=\{0\}$, the vector bundle $J(\operatorname{Rad}(T M))$ is a subbundle of $S(T M)$ or $S\left(T M^{\perp}\right)$ of rank 1. Also, from the fact that $\bar{g}(J N, N)=0$ and $\bar{g}(J N, \xi)=-\bar{g}(N, J \xi)=0$, the vector bundle $J(\operatorname{ltr}(T M))$ is also a subbundle of $S(T M)$ or $S\left(T M^{\perp}\right)$ of rank 1. Since $J \xi$ and $J N$ are null vector fields satisfying $\bar{g}(J \xi, J N)=1$ and both $S(T M)$ and $S\left(T M^{\perp}\right)$ are non-degenerate distributions, we show that $\{J \xi, J N\} \in \Gamma(S(T M))$ or $\{J \xi, J N\} \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. If $\{J \xi, J N\} \in$ $\Gamma\left(S\left(T M^{\perp}\right)\right)$, as $J(\operatorname{Rad}(T M)), J(\operatorname{ltr}(T M))$ and $S\left(T M^{\perp}\right)$ are non-degenerate of rank 1, we have $J(\operatorname{Rad}(T M))=J(\operatorname{ltr}(T M))=S\left(T M^{\perp}\right)$. It is a contradiction. Thus we choose a screen distribution $S(T M)$ that contains $J(\operatorname{Rad}(T M))$ and $J(\operatorname{ltr}(T M))$. For $L \in \Gamma\left(S\left(T M^{\perp}\right)\right)$, as $\bar{g}(J L, L)=0, \bar{g}(J L, \xi)=-\bar{g}(L, J \xi)=0$
and $\bar{g}(J L, N)=-\bar{g}(L, J N)=0, J\left(S\left(T M^{\perp}\right)\right)$ is also a vector subbundle of $S(T M)$ such that

$$
J\left(S\left(T M^{\perp}\right)\right) \oplus_{\text {orth }}\{J(\operatorname{Rad}(T M)) \oplus J(\operatorname{ltr}(T M))\}
$$

We choose $S(T M)$ to contain $J\left(S\left(T M^{\perp}\right)\right)$ too. Thus the screen distribution $S(T M)$ is expressed as follow:
(2.3) $\quad S(T M)=\{J(\operatorname{Rad}(T M)) \oplus J(\operatorname{ltr}(T M))\} \oplus_{\text {orth }} J\left(S\left(T M^{\perp}\right)\right) \oplus_{\text {orth }} H_{o}$, where H_{o} is a non-degenerate distribution, otherwise $S(T M)$ would be degenerate. Moreover, by (2.3), we show that H_{o} is an almost complex distribution on M with respect to J, i.e., $J\left(H_{o}\right)=H_{o}$. Finally, denote $H^{\prime}=$ $J(\operatorname{ltr}(T M)) \oplus_{\text {orth }} J\left(S\left(T M^{\perp}\right)\right)$. Thus (2.3) gives $S(T M)$ as in condition (B) and $J\left(H^{\prime}\right)=K_{1} \oplus_{\text {orth }} K_{2}$, where $K_{1}=\operatorname{ltr}(T M)$ and $K_{2}=S\left(T M^{\perp}\right)$. Hence M is a CR-lightlike submanifold of an indefinite Kaehler manifold \bar{M}.

From Theorem 2.1, the general decompositions (1.1) and (1.3) reduce to

$$
\begin{equation*}
T M=H \oplus H^{\prime}, \quad T \bar{M}=H \oplus H^{\prime} \oplus \operatorname{tr}(T M) \tag{2.4}
\end{equation*}
$$

where H is a 2-lightlike almost complex distribution on M such that

$$
\begin{equation*}
H=\operatorname{Rad}(T M) \oplus_{\text {orth }} J(\operatorname{Rad}(T M)) \oplus_{\text {orth }} H_{o} \tag{2.5}
\end{equation*}
$$

Consider the null and non-null vector fields $\{U, V\}$ and W such that

$$
\begin{equation*}
U=-J N, \quad V=-J \xi, \quad W=-J L \tag{2.6}
\end{equation*}
$$

Denote by S the projection morphism of $T M$ on H. Then, by the first equation of (2.4) [denote (2.4)-1], any vector field on M is expressed as follows:

$$
\begin{equation*}
X=S X+u(X) U+w(X) W, \quad J X=F X+u(X) N+w(X) L \tag{2.7}
\end{equation*}
$$

where u, v and w are 1-forms locally defined on M by

$$
\begin{equation*}
u(X)=g(X, V), \quad v(X)=g(X, U), \quad w(X)=\epsilon g(X, W) \tag{2.8}
\end{equation*}
$$

and F is a tensor field of type $(1,1)$ globally defined on M by

$$
F X=J S X, \quad \forall X \in \Gamma(T M) .
$$

Apply J to (2.7)-2 and using (2.1) and (2.8), we have

$$
\begin{align*}
& F^{2} X=-X+u(X) U+w(X) W \tag{2.9}\\
& u(U)=w(W)=1, F U=F W=0
\end{align*}
$$

By using (1.9), (2.1), (2.7)-2 and (2.8) and Gauss-Weingarten equations for a half lightlike submanifold, we deduce
(2.10) $\left(\nabla_{X} u\right)(Y)=-u(Y) \tau(X)-w(Y) \phi(X)-B(X, F Y)$,
(2.11) $\left(\nabla_{X} v\right)(Y)=v(Y) \tau(X)+\epsilon w(Y) \rho(X)-g\left(A_{N} X, F Y\right)$,
(2.12) $\left(\nabla_{X} w\right)(Y)=-u(Y) \rho(X)-D(X, F Y)$,
$(2.13)\left(\nabla_{X} F\right)(Y)=u(Y) A_{N} X+w(Y) A_{L} X-B(X, Y) U-D(X, Y) W$.

Differentiating (2.6) with X and using (1.5), (1.7), (2.1) and (2.9), we have

$$
\begin{align*}
& B(X, U)=v\left(A_{\xi}^{*} X\right)=u\left(A_{N} X\right)=C(X, V) \tag{2.14}\\
& C(X, W)=v\left(A_{L} X\right)=\epsilon w\left(A_{N} X\right)=\epsilon D(X, U) \tag{2.15}\\
& B(X, W)=u\left(A_{L} X\right)=\epsilon w\left(A_{\xi}^{*} X\right)=\epsilon D(X, V) \tag{2.16}\\
& \nabla_{X} U=F\left(A_{N} X\right)+\tau(X) U+\rho(X) W \tag{2.17}\\
& \nabla_{X} V=F\left(A_{\xi}^{*} X\right)-\tau(X) V-\epsilon \phi(X) W \tag{2.18}\\
& \nabla_{X} W=F\left(A_{L} X\right)+\phi(X) U \tag{2.19}
\end{align*}
$$

Lemma 1. Let ($M, g, S(T M))$ be a real half lightlike submanifold of an indefinite Kaehler manifold \bar{M}. If F is parallel with respect to the induced connection ∇, i.e., $\left(\nabla_{X} F\right) Y=0$ for all $X, Y \in \Gamma(T M)$, then we have

$$
\begin{align*}
B(X, Y) & =u(Y) B(X, U), \quad D(X, Y)=w(Y) D(X, W) \tag{2.20}\\
B(X, V) & =B(X, W)=C(X, U)=C(X, W) \tag{2.21}\\
& =D(X, V)=D(X, U)=\phi(X)=\rho(X)=0
\end{align*}
$$

Proof. If F is parallel with respect to the induced connection ∇, then, taking the scalar product with V, W, U and N at (2.13) by turns, we have

$$
\begin{align*}
& B(X, Y)=u(Y) u\left(A_{N} X\right)+w(Y) u\left(A_{L} X\right) \tag{2.22}\\
& D(X, Y)=u(Y) w\left(A_{N} X\right)+w(Y) w\left(A_{L} X\right) \tag{2.23}\\
& u(Y) v\left(A_{N} X\right)+w(Y) v\left(A_{L} X\right)=0 \tag{2.24}\\
& w(Y) g\left(A_{L} X, N\right)=0, \quad \forall X, Y \in \Gamma(T M)
\end{align*}
$$

Replace Y by V, U and W in (2.22), (2.23) and (2.24), Y by ξ in (2.23) and Y by W in the last equation, we obtain (2.21). From (2.21), (2.22) and (2.23), we have (2.20).

Theorem 2.2. Let $(M, g, S(T M))$ be a real half lightlike submanifold of an indefinite Kaehler manifold \bar{M}. If F is parallel with respect to the induced connection ∇ on M, then the distributions H and H^{\prime} are integrable and parallel with respect to ∇ and M is locally a product manifold $M_{2} \times M^{\sharp}$, where M_{2} is a leaf of H^{\prime} and M^{\sharp} is a leaf of H.

Proof. Using (1.4), (1.7), (1.12) and (2.1), we derive

$$
\begin{array}{ll}
g\left(\nabla_{X} \xi, V\right)=-B(X, V), & g\left(\nabla_{X} \xi, W\right)=-B(X, W), \\
g\left(\nabla_{X} V, V\right)=0, & g\left(\nabla_{X} V, W\right)=-\phi(X), \tag{2.25}\\
g\left(\nabla_{X} Y, V\right)=B(X, J Y), & g\left(\nabla_{X} Y, W\right)=\epsilon D(X, J Y)
\end{array}
$$

for any $X \in \Gamma(H)$ and $Y \in \Gamma\left(H_{o}\right)$. Since F is parallel with respect to the induced connection ∇, we have $B(X, V)=B(X, W)=\phi(X)=0$. Take $Y \in \Gamma\left(H_{o}\right)$ in two equations of (2.20), we have $B(X, Y)=0$ and $D(X, Y)=0$ for all $X \in \Gamma(T M)$ respectively. Thus we have $B(X, J Y)=D(X, J Y)=0$ due to $J Y \in \Gamma\left(H_{o}\right)$. Thus H is integrable and parallel with respect to ∇.

Using the Gauss-Weingarten formulas, (1.12)~(1.15) and (2.1), we derive

$$
\begin{array}{ll}
g\left(\nabla_{Z} W, N\right)=\epsilon D(Z, U), & g\left(\nabla_{Z} U, N\right)=C(Z, U) \\
g\left(\nabla_{Z} W, U\right)=-\epsilon \rho(Z), & g\left(\nabla_{Z} U, U\right)=0 \tag{2.26}\\
g\left(\nabla_{Z} W, Y\right)=-\epsilon D(Z, J Y), & g\left(\nabla_{Z} U, Y\right)=-C(Z, J Y)
\end{array}
$$

for any $Z \in \Gamma\left(H^{\prime}\right)$ and $Y \in \Gamma\left(H_{o}\right)$. Since F is parallel with respect to ∇ and $Z=U$ or W, we have $D(Z, U)=D(Z, J Y)=C(Z, U)=C(Z, J Y)=0$ and $\rho(Z)=0$. Thus the distribution H^{\prime} is also integrable and parallel with respect to the induced connection ∇. From this result, we have our theorem.

The type numbers $t_{N}(p)$ and $t_{L}(p)$ of M at a point $p \in M$ is the rank of the shape operators A_{N} and A_{L} at p respectively. By the equation (2.13) it follows that $A_{N} X=B(X, U) U$ and $A_{L} X=D(X, W) W$. Thus we have:

Theorem 2.3. Let $(M, g, S(T M))$ be a real half lightlike submanifold of an indefinite Kaehler manifold \bar{M}. If F is parallel with respect to the induced connection ∇ on M, then the type numbers of M satisfy $t_{N}(p) \leq 1$ and $t_{L}(p) \leq$ 1 for any $p \in M$.

3. Screen conformal half lightlike submanifolds

A half lightlike submanifold $(M, g, S(T M))$ of a semi-Riemannian manifold (\bar{M}, \bar{g}) is screen conformal [1] if the shape operators A_{N} and A_{ξ}^{*} of M and $S(T M)$ respectively are related by $A_{N}=\varphi A_{\xi}^{*}$, or equivalently

$$
\begin{equation*}
C(X, P Y)=\varphi B(X, Y), \quad \forall X, Y \in \Gamma(T M) \tag{3.1}
\end{equation*}
$$

where φ is a non-vanishing smooth function on a neighborhood \mathcal{U} in M. In particular, if φ is a non-zero constant, M is called screen homothetic [4].
Note 1. For a screen conformal half lightlike submanifold M, the second fundamental form C is symmetric on $S(T M)$. Thus $S(T M)$ is an integrable distribution and M is locally a product manifold $L_{\xi} \times M^{*}$ where L_{ξ} is a null curve tangent to $\operatorname{Rad}(T M)$ and M^{*} is a leaf of $S(T M)[3]$.

From (2.14), (2.15), (2.16) and (3.1), we obtain

$$
\begin{equation*}
h(X, U-\varphi V)=0, \quad \forall X \in \Gamma(T M) \tag{3.2}
\end{equation*}
$$

where $h(X, Y)=B(X, Y) N+D(X, Y) L$ is the global second fundamental form tensor of M. Thus we have:

Theorem 3.1. Let $(M, g, S(T M))$ be a screen conformal real half lightlike submanifold of an indefinite Kaehler manifold \bar{M}. Then the non-null vector field $U-\varphi V \neq 0$ is conjugate to any vector field on M. In particular, $U-\varphi V$ is an asymptotic vector field.

Corollary 1. Let $(M, g, S(T M))$ be a screen conformal real half lightlike submanifold of an indefinite Kaehler manifold \bar{M}. Then the second fundamental form h on M (consequently, C on $S(T M)$) is degenerate on $S(T M)$.

Proof. Since $h(X, U-\varphi V)=0$ for all $X \in \Gamma(S(T M))$ and $U-\varphi V \in$ $\Gamma(S(T M))$, the second fundamental form tensor h is degenerate on $S(T M)$.

Theorem 3.2. Let $(M, g, S(T M))$ be a screen conformal real half lightlike submanifold of an indefinite Kaehler manifold \bar{M}. If M is totally umbilical, then M and $S(T M)$ are totally geodesic.

Proof. If M is totally umbilical, then there exists a smooth transversal vector field $\mathcal{H} \in \Gamma(\operatorname{tr}(T M))$ such that

$$
h(X, Y)=\mathcal{H} g(X, Y), \forall X, Y \in \Gamma(T M)
$$

From this fact and the equation (3.2), we have

$$
\mathcal{H} g(X, U-\varphi V)=0, \forall X \in \Gamma(T M) .
$$

Replace X by V in this equation, we have $\mathcal{H}=0$. Thus $h=0$. It follow that $B=D=0$ and $C=0$. Consequently, M and $S(T M)$ are totally geodesic.

Theorem 3.3. Let $(M, g, S(T M))$ be a screen conformal real totally umbilical half lightlike submanifold of an indefinite Kaehler manifold \bar{M}. Then H is an integrable and parallel distribution with respect to ∇ and M is locally a product manifold $L_{u} \times L_{w} \times M^{\sharp}$, where L_{u} and L_{w} are null and non-null curves tangent to $J(\operatorname{ltr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ respectively and M^{\sharp} is a leaf of H.
Proof. Since M is totally umbilical, both M and $S(T M)$ are totally geodesic and $B=D=C=\phi=0$. All equations of (2.25) are zero. Thus H is an integrable and parallel distribution with respect to ∇. Also, $J(\operatorname{ltr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right.$ are integrable distributions. Thus we have our theorem.

Theorem 3.4. Let $(M, g, S(T M))$ be a screen conformal real totally umbilical half lightlike submanifold of an indefinite Kaehler manifold \bar{M}. If U or W is parallel with respect to the induced connection ∇ on M, then the distributions H and H^{\prime} are integrable and parallel with respect to ∇ and M is locally a product manifold $M_{2} \times M^{\sharp}$, where M_{2} is a leaf of H^{\prime} and M^{\sharp} is a leaf of H.

Proof. As M is totally umbilical, M and $S(T M)$ are totally geodesic and all of (2.25) and (2.26) are zero except only $g\left(\nabla_{Z} J L, J N\right)=-\epsilon \rho(Z)$. If U is parallel, applying J to (2.17) and using (2.6) and (2.9), we obtain

$$
A_{N} X=u\left(A_{N} X\right) U+w\left(A_{N} X\right) W ; \quad \tau(X)=\rho(X)=0, \forall X \in \Gamma(T M)
$$

If W is parallel, applying J to (2.19) and by using (2.6) and (2.9), we obtain

$$
A_{L} X=u\left(A_{L} X\right) U+w\left(A_{L} X\right) W ; \quad \phi(X)=0, \forall X \in \Gamma(T M)
$$

From the last equation, we have $\rho(X)=\epsilon g\left(A_{L} X, N\right)=0$. Thus H and H^{\prime} are integrable and parallel distributions on M. We have our theorem.

Theorem 3.5. Let $(M, g, S(T M))$ be a screen conformal real half lightlike submanifold of an indefinite complex space form $\bar{M}(c)$. Then we have $c=0$.

Proof. By using (1.18) and (2.2), we have

$$
\begin{aligned}
& \frac{c}{4}\{u(X) \bar{g}(J Y, Z)-u(Y) \bar{g}(J X, Z)+2 u(Z) \bar{g}(X, J Y)\} \\
= & \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)+B(Y, Z) \tau(X) \\
& -B(X, Z) \tau(Y)+D(Y, Z) \phi(X)-D(X, Z) \phi(Y)
\end{aligned}
$$

for all $X, Y, Z \in \Gamma(T M)$. Using this, (1.19), (1.22) and (3.1), we obtain

$$
\begin{aligned}
& \frac{c}{4}\{g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)+v(X) \bar{g}(J Y, P Z) \\
& -v(Y) \bar{g}(J X, P Z)+2 v(P Z) \bar{g}(X, J Y)\} \\
= & \{X[\varphi]-2 \varphi \tau(X)\} B(Y, P Z)-\{Y[\varphi]-2 \varphi \tau(Y)\} B(X, P Z) \\
& +\{\varphi \phi(Y)+\epsilon \rho(Y)\} D(X, P Z)-\{\varphi \phi(X)+\epsilon \rho(X)\} D(Y, P Z) \\
& +\frac{c}{4} \varphi\{u(X) \bar{g}(J Y, P Z)-u(Y) \bar{g}(J X, P Z)+2 u(P Z) \bar{g}(X, J Y)\} .
\end{aligned}
$$

Replacing $P Z$ by μ in the last equation and using (3.2), we obtain

$$
\frac{c}{2}\{2 \varphi g(X, J Y)+(v(X)-\varphi u(X)) \eta(Y)-(v(Y)-\varphi u(Y)) \eta(X)\}=0
$$

Taking $X=V, Y=\xi$ in this equation, we obtain $c=0$.
Corollary 2. There exist no screen conformal real half lightlike submanifolds M of indefinite complex space form $\bar{M}(c)$ with $c \neq 0$.

4. Induced Ricci curvatures

Let $R^{(0,2)}$ denote the induced Ricci type tensor of M given by

$$
\begin{equation*}
R^{(0,2)}(X, Y)=\operatorname{trace}\{Z \rightarrow R(Z, X) Y\} \tag{4.1}
\end{equation*}
$$

for all $X, Y, Z \in \Gamma(T M)$. Substituting the Gauss-Codazzi equations (1.17) and (1.19) in (1.23), then, using the relations (1.12) $\sim(1.15)$, we obtain

$$
\begin{aligned}
R^{(0,2)}(X, Y)= & \overline{\operatorname{Ric}}(X, Y)+B(X, Y) \operatorname{tr} A_{N}+D(X, Y) \operatorname{tr} A_{L} \\
& -g\left(A_{N} X, A_{\xi}^{*} Y\right)-\epsilon g\left(A_{L} X, A_{L} Y\right)+\rho(X) \phi(Y) \\
& -\bar{g}(\bar{R}(\xi, Y) X, N)-\epsilon \bar{g}(\bar{R}(L, Y) X, L) .
\end{aligned}
$$

A tensor field $R^{(0,2)}$ of M is called its induced Ricci tensor if it is symmetric. In the sequel, a symmetric $R^{(0,2)}$ tensor will be denoted by Ric.

If \bar{M} is an indefinite complex space form $\bar{M}(c)$, using (2.2), we have

$$
\begin{align*}
R^{(0,2)}(X, Y)= & \frac{c}{4}\{(2 m+1) g(X, Y)-u(X) v(Y)-2 v(X) u(Y)\} \tag{4.2}\\
& +B(X, Y) \operatorname{tr} A_{N}+D(X, Y) \operatorname{tr} A_{L}-g\left(A_{N} X, A_{\xi}^{*} Y\right) \\
& -\epsilon g\left(A_{L} X, A_{L} Y\right)+\rho(X) \phi(Y)
\end{align*}
$$

Moreover, if M is a screen conformal, then (4.2) reduces to

$$
\begin{equation*}
R^{(0,2)}(X, Y)=\varphi\left\{B(X, Y) \operatorname{tr} A_{\xi}^{*}-g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)\right\} \tag{4.3}
\end{equation*}
$$

$$
+D(X, Y) \operatorname{tr} A_{L}-\varepsilon g\left(A_{L} X, A_{L} Y\right)+\rho(X) \phi(Y)
$$

From (1.20) and (4.3), we have the following assertions:
Theorem 4.1. For a screen conformal half lightlike submanifold of an indefinite complex space form $\bar{M}(c)$, the following assertions are equivalent;
(1) The Ricci type tensor $R^{(0,2)}$ is a symmetric Ricci tensor.
(2) each 1-form τ is closed, i.e., $d \tau=0$ on any $\mathcal{U} \subset M$.
(3) $\rho(X) \phi(Y)=\rho(Y) \phi(X)$ for all $X, Y \in \Gamma(T M)$.

Theorem 4.2. Let $(M, g, S(T M))$ be a screen conformal real half lightlike submanifold of an indefinite complex space form $\bar{M}(c)$ with a parallel co-screen distribution. Then $R^{(0,2)}$ is a symmetric Ricci tensor and

$$
\begin{equation*}
R^{(0,2)}(X, Y)=\varphi\left\{B(X, Y) \operatorname{tr} A_{\xi}^{*}-g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)\right\} \tag{4.4}
\end{equation*}
$$

Theorem 4.3. Let $(M, g, S(T M))$ be a screen conformal real half lightlike submanifold of an indefinite complex space form $\bar{M}(c)$. If M is totally umbilical, then M is Ricci flat.

Proof. From Theorem 3.2, M is totally geodesic. Thus, from (1.12) and (1.14), we have $B=D=A_{\xi}^{*}=\phi=0$ and $A_{L} X=\epsilon \rho(X) \xi$. Therefore, using (4.3), we obtain $R^{(0,2)}(X, Y)=0$ and $R^{(0,2)}=$ Ric.

As $\{U, V\}$ is a basis of $\Gamma(J(\operatorname{Rad}(T M)) \oplus J(\operatorname{ltr}(T M)))$, the vector fields

$$
\begin{equation*}
\mu=U-\varphi V, \quad \nu=U+\varphi V \tag{4.5}
\end{equation*}
$$

form also a basis of $\Gamma(J(\operatorname{Rad}(T M)) \oplus J(\operatorname{ltr}(T M)))$. From (3.2), we have

$$
\begin{array}{lll}
g\left(A_{\xi}^{*} \mu, X\right)=0, & g\left(A_{\xi}^{*} \mu, N\right)=0, & A_{\xi}^{*} \mu=0 \\
g\left(A_{L} \mu, X\right)=0, & g\left(A_{L} \mu, N\right)=\epsilon \rho(\mu), & A_{L} \mu=\epsilon \rho(\mu) \xi \tag{4.7}
\end{array}
$$

due to $\phi(\mu)=-\epsilon D(\mu, \xi)=0$. Thus μ is an eigenvector field of A_{ξ}^{*} on $S(T M)$ corresponding to the eigenvalue 0 . From (2.15), (3.1), (4.5) and the linearity of F, for all $X \in \Gamma(T M)$, we have

$$
\begin{align*}
& \nabla_{X} \mu=\tau(X) \nu-X[\varphi] V+(\rho+\epsilon \varphi \phi)(X) W, \tag{4.8}\\
& \nabla_{X} \nu=2 F\left(A_{N} X\right)+\tau(X) \mu+X[\varphi] V+(\rho-\epsilon \varphi \phi)(X) W . \tag{4.9}
\end{align*}
$$

Theorem 4.4. Let $(M, g, S(T M))$ be a screen conformal real half lightlike submanifold of an indefinite complex space form $\bar{M}(c)$ with a symmetric Ricci tensor. If M is an Einstein manifold, then M is Ricci flat.

Proof. If M is a screen conformal real half lightlike submanifold of an indefinite complex space form $\bar{M}(c)$ with a symmetric Ricci tensor, then $c=0$ and $R^{(0,2)}=$ Ric. Let M be an Einstein manifold, that is, $R^{(0,2)}=\gamma g$. Replacing X and Y by V and μ in (4.3) respectively and using (4.6) and (4.7), we obtain $\gamma=0$. Thus M is Ricci flat.

Note 2. Suppose $R^{(0,2)}$ is symmetric, since $d \tau=0$, there exists a pair $\{\xi, N\}$ on \mathcal{U} such that the corresponding 1-form τ vanishes. We call such a pair the distinguished null pair of M.

Although $S(T M)$ is not unique, it is canonically isomorphic to the factor vector bundle $T M^{*}=T M / \operatorname{Rad} T M$ considered by Kupeli [7]. Thus all $S(T M)$ are isomorphic. For this reason, we consider only screen homothetic real half lightlike submanifolds equipped with the distinguished null pairs.

Theorem 4.5. Let $(M, g, S(T M))$ be a half lightlike submanifolds of a semiRemanning manifold (\bar{M}, \bar{g}). Then the co-screen distribution $S\left(T M^{\perp}\right)$ is parallel with respect to the connection $\bar{\nabla}$ if and only if $A_{L}=0$ on $\Gamma(T M)$.
Proof. If the co-screen distribution $S\left(T M^{\perp}\right)$ is parallel with respect to the connection $\bar{\nabla}$, then, from (1.6), we have $A_{L} X=\phi(X) N$ for all $X \in \Gamma(T M)$. Taking the scaler product with ξ and N to this equation, we obtain $\phi=0$ and $\rho=0$ respectively. Consequently, we obtain $A_{L}=0$ and $D=0$. Conversely, if $A_{L} X=0$ for all $X \in \Gamma(T M)$, then, from (1.14), we have $D=\rho=0$. From (1.9), we obtain $\phi=0$. Thus L is parallel with respect to the connection $\bar{\nabla}$.

Theorem 4.6. Let $(M, g, S(T M))$ be a screen homothetic real half lightlike submanifold of an indefinite complex space form $\bar{M}(c)$ with a parallel co-screen distribution. Then M is locally a product manifold $M_{2}^{\prime} \times M^{\hbar}$, where M_{2}^{\prime} and M^{\hbar} are some leaves of integrable distributions of M.

Proof. Let $\mathcal{H}^{\prime}=\operatorname{Span}\{\mu, W\}$. Then $\mathcal{H}=H_{o} \oplus_{\text {orth }} \operatorname{Span}\{\xi, \nu\}$ is a complementary subbundle to \mathcal{H}^{\prime} in $T M$ and we have the decomposition

$$
\begin{equation*}
T M=\mathcal{H}^{\prime} \oplus_{\text {orth }} \mathcal{H} \tag{4.10}
\end{equation*}
$$

Using (1.8), (2.19), (4.8) and (4.9), for $X \in \Gamma(\mathcal{H})$ and $Y \in \Gamma\left(H_{o}\right)$, we derive

$$
\begin{align*}
& g\left(\nabla_{X} Y, \mu\right)=0, \quad g\left(\nabla_{X} Y, W\right)=-g\left(F\left(A_{L} X\right), Y\right) \\
& g\left(\nabla_{X} \nu, \mu\right)=X[\varphi]-2 \varphi \tau(X), \quad g\left(\nabla_{X} \nu, W\right)=(\epsilon \rho-\varphi \phi)(X) \tag{4.11}\\
& g\left(\nabla_{X} \xi, \mu\right)=-B(X, \mu)=0, \quad g\left(\nabla_{X} \xi, W\right)=-B(X, W)
\end{align*}
$$

If L is parallel, then we have $A_{L}=D=\phi=\rho=0$. From (2.16), we get $B(X, W)=0$. Thus all of the equation (4.11) are 0 . Thus \mathcal{H} is parallel with respect to ∇ and \mathcal{H} is an integrable distribution.

Also, using (2.19) and (4.9), for $X \in \Gamma\left(\mathcal{H}^{\prime}\right)$ and $Y \in \Gamma\left(H_{o}\right)$, we derive

$$
\begin{array}{ll}
g\left(\nabla_{X} \mu, \xi\right)=0, & g\left(\nabla_{X} W, \xi\right)=0 \\
g\left(\nabla_{X} \mu, \nu\right)=-X[\varphi]+2 \varphi \tau(X), & g\left(\nabla_{X} W, \nu\right)=-(\epsilon \rho-\varphi \phi)(X) \\
g\left(\nabla_{X} \mu, Y\right)=0, & g\left(\nabla_{X} W, Y\right)=g\left(F\left(A_{L} X\right), Y\right) \tag{4.12}
\end{array}
$$

If L is parallel, then all of the equation (4.12) are 0 . Thus \mathcal{H}^{\prime} is parallel with respect to ∇ and \mathcal{H}^{\prime} is an integrable distribution. Thus we have our theorem.

Let $\mathcal{H}^{\prime}=\operatorname{Span}\{\mu, W\}$. Then $\mathcal{G}=H_{o} \oplus_{\text {orth }} \operatorname{Span}\{\nu\}$ is a complementary vector subbundle to \mathcal{G} in $S(T M)$. From (4.11) and (4.12), we show the distributions \mathcal{H}^{\prime} and \mathcal{G} are integrable and we have the following decomposition

$$
\begin{equation*}
S(T M)=\mathcal{H}^{\prime} \oplus_{\text {orth }} \mathcal{G} \tag{4.13}
\end{equation*}
$$

Theorem 4.7. Let $(M, g, S(T M))$ be a screen homothetic Einstein real half lightlike submanifold of an indefinite complex space form $\bar{M}(c)$ of index 2. If the co-screen $S\left(T M^{\perp}\right)$ is a parallel distribution, then M is locally a product manifold $L_{\xi} \times M_{2}^{\prime} \times M^{\beta}$ or $L_{\xi} \times M_{2}^{\prime} \times\left(M^{\beta}=L_{\alpha} \times M^{0}\right)$, where L_{ξ} and L_{α} are null and spacelike curve, M_{2}^{\prime} is a hyperbolic plane, and both M^{β} and M^{0} are Euclidean spaces.

Proof. By Theorem 4.4 and the equation (4.4), we have

$$
\begin{equation*}
g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)-\operatorname{tr} A_{\xi}^{*} g\left(A_{\xi}^{*} X, Y\right)=0 \tag{4.14}
\end{equation*}
$$

From (1.12) and (2.16), we obtain $A_{\xi}^{*} W=0$. Thus ξ, μ and W are eigenvector fields of A_{ξ}^{*} corresponding the eigenvalue 0 . Let $\mu=\frac{1}{\sqrt{2 \epsilon_{1} \varphi}}\{U-\varphi V\}$ where $\epsilon_{1}=\operatorname{sgn} \varphi . \quad \mu$ is a timelike vector field and \mathcal{G} is an integrable Riemannian distribution. Since A_{ξ}^{*} is $\Gamma(\mathcal{G})$-valued real symmetric operator due to $g\left(A_{\xi}^{*} X, N\right)=g\left(A_{\xi}^{*} X, \mu\right)=g\left(A_{\xi}^{*} X, W\right)=0, A_{\xi}^{*}$ have $(2 m-5) \equiv n$ real orthonormal eigenvector fields in \mathcal{G} and is diagonalizable. Consider a frame field of eigenvectors $\left\{\mu, W, e_{1}, \ldots, e_{n}\right\}$ of A_{ξ}^{*} on $S(T M)$ such that $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal frame field of A_{ξ}^{*} on \mathcal{G}. Then $A_{\xi}^{*} e_{i}=\lambda_{i} e_{i}(1 \leq i \leq n)$. Put $X=Y=e_{i}$ in (4.14), λ_{i} is a solution of equation

$$
x(x-\alpha)=0
$$

where $\alpha=\operatorname{tr} A_{\xi}^{*}$. This equation has at most two distinct solutions 0 and α on \mathcal{U}. Assume that there exists $p \in\{0, \ldots, n\}$ such that $\lambda_{1}=\cdots=\lambda_{p}=0$ and $\lambda_{p+1}=\cdots=\lambda_{n}=\alpha$, by renumbering if necessary, then we have

$$
\alpha=\operatorname{tr} A_{\xi}^{*}=(n-p) \alpha .
$$

If $\alpha=0$, then $A_{\xi}^{*} X=0$ for all $X \in \Gamma(T M)$. Thus M is a totally geodesic and $S(T M)$ is also totally geodesic. From (1.17) and (1.21), we have $R^{*}(X, Y) Z=\bar{R}(X, Y) Z=0$ for all $X, Y, Z \in \Gamma(S(T M))$. Thus M is locally a product manifold $L_{\xi} \times\left(M^{*}=M_{2}^{\prime} \times M^{\beta}\right)$, where L_{ξ} is a null curve tangent to $\operatorname{Rad}(T M)$, the leaf M^{*} of $S(T M)$ is a Minkowski space, M_{2}^{\prime} is a hyperbolic plane and M^{β} is a Riemannian manifold. Since $\nabla_{X} \mu=\nabla_{X} W=0$ and $g\left(\nabla_{X}^{*} Y, \mu\right)=g\left(\nabla_{X}^{*} Y, W\right)=0$ for all $X, Y, Z \in \Gamma(S(T M))$, we have $\nabla_{X}^{*} Y \in \Gamma(\mathcal{G})$ and $R^{*}(X, Y) Z \in \Gamma(\mathcal{G})$. This imply $\nabla_{X}^{*} Y=Q\left(\nabla_{X}^{*} Y\right)$, that is, M^{β} is a totally geodesic and $R^{*}(X, Y) Z=Q\left(R^{*}(X, Y) Z\right)=0$, where Q is a projection morphism of $S(T M)$ on \mathcal{G} with respect to the decomposition (4.13). Thus M^{β} is a Euclidean space.

If $\alpha \neq 0$, then $p=n-1$, i.e.,

$$
A_{\xi}^{*}=\left(\begin{array}{cccc}
0 & & & \tag{4.15}\\
& \ddots & & \\
& & 0 & \\
& & & \alpha
\end{array}\right)
$$

Consider the following two distributions E_{0} and E_{α} on \mathcal{G};

$$
\Gamma\left(E_{0}\right)=\left\{X \in \Gamma(\mathcal{G}) \mid A_{\xi}^{*} X=0\right\}, \quad \Gamma\left(E_{\alpha}\right)=\left\{X \in \Gamma(\mathcal{G}) \mid A_{\xi}^{*} X=\alpha X\right\}
$$

From (4.15), we know that the distributions E_{0} and E_{α} are mutually orthogonal non-degenerate subbundle of \mathcal{G}, of rank $(n-1)$ and 1 respectively, satisfy $\mathcal{G}=E_{0} \oplus_{\text {orth }} E_{\alpha}$. From (4.14), we get $A_{\xi}^{*}\left(A_{\xi}^{*}-\alpha Q\right)=0$. Using this equation, we have $\operatorname{Im} A_{\xi}^{*} \subset \Gamma\left(E_{\alpha}\right)$ and $\operatorname{Im}\left(A_{\xi}^{*}-\alpha Q\right) \subset \Gamma\left(E_{0}\right)$. For any $X, Y \in \Gamma\left(E_{0}\right)$ and $Z \in \Gamma(\mathcal{G})$, we get $\left(\nabla_{X} B\right)(Y, Z)=-g\left(A_{\xi}^{*} \nabla_{X} Y, Z\right)$. Use this and the fact $\left(\nabla_{X} B\right)(Y, Z)=\left(\nabla_{Y} B\right)(X, Z)$, we have $g\left(A_{\xi}^{*}[X, Y], Z\right)=0$. If we take $Z \in$ $\Gamma\left(E_{\alpha}\right)$, since $\operatorname{Im} A_{\xi}^{*} \subset \Gamma\left(E_{\alpha}\right)$ and E_{α} is non-degenerate, we have $A_{\xi}^{*}[X, Y]=0$. Thus $[X, Y] \in \Gamma\left(E_{0}\right)$ and E_{0} is integrable. Thus M is locally a product manifold $L_{\xi} \times\left(M^{*}=M_{2}^{\prime} \times L_{\alpha} \times M^{0}\right)$, where L_{α} is a spacelike curve and M^{0} is an ($n-1$)-dimensional Riemannian manifold satisfy $A_{\xi}^{*}=0$. From (1.17) and (1.21), we have $R^{*}(X, Y) Z=\bar{R}(X, Y) Z=0$ for all $X, Y, Z \in \Gamma\left(E_{0}\right)$. Since $g\left(\nabla_{X}^{*} Y, \mu\right)=g\left(\nabla_{X}^{*} Y, W\right)=0$ and $g\left(\nabla_{X}^{*} Y, e_{n}\right)=-g\left(Y, \nabla_{X} e_{n}\right)=0$ for all $X, Y \in \Gamma\left(E_{0}\right)$ because $\nabla_{X} e \in \Gamma\left(E_{\alpha}\right)$ for $X \in \Gamma\left(E_{0}\right)$ and $e \in \Gamma\left(E_{\alpha}\right)$. In fact, from (1.18) such that $D=c=\tau=0$, we get

$$
g\left(\left\{\left(A_{\xi}^{*}-\alpha Q\right) \nabla_{X} e-A_{\xi}^{*} \nabla_{e} X\right\}, Z\right)=X[\varphi] g(e, Z)
$$

for all $X \in \Gamma\left(E_{0}\right), e \in \Gamma\left(E_{\alpha}\right)$ and $Z \in \Gamma(\mathcal{G})$. Using the fact that \mathcal{G} is nondegenerate distribution, we have $\left(A_{\xi}^{*}-\alpha Q\right) \nabla_{X} e=A_{\xi}^{*} \nabla_{e} X+X[\varphi] e$. Since the left term of this equation is in $\Gamma\left(E_{0}\right)$ and the right term is in $\Gamma\left(E_{\alpha}\right)$ and $E_{0} \cap E_{\alpha}=\{0\}$, we have $\left(A_{\xi}^{*}-\alpha Q\right) \nabla_{X} e=0$ and $A_{\xi}^{*} \nabla_{e} X=-X[\varphi] e$. This imply that $\nabla_{X} e \in \Gamma\left(E_{\alpha}\right)$. Thus $\nabla_{X}^{*} Y=\pi \nabla_{X}^{*} Y$ for all $X, Y \in \Gamma\left(E_{0}\right)$, where π is the projection morphism of $\Gamma(S(T M))$ on $\Gamma\left(E_{0}\right)$ and $\pi \nabla^{*}$ is the induced connection on E_{0}. This imply that the leaf M^{0} of E_{0} is totally geodesic. As $g\left(R^{*}(X, Y) Z, \mu\right)=g\left(R^{*}(X, Y) Z, W\right)=0$ and $g\left(R^{*}(X, Y) Z, e_{n}\right)=0$ for all $X, Y, Z \in \Gamma\left(E_{0}\right)$, we have $R^{*}(X, Y) Z=\pi R^{*}(X, Y) Z \in \Gamma\left(E_{0}\right)$ and the curvature tensor πR^{*} of E_{0} is flat. Thus M^{0} is a Euclidean space.

References

[1] C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.
[2] K. L. Duggal, On canonical screen for lightlike submanifolds of codimension two, Cent. Eur. J. Math. 5 (2007), no. 4, 710-719
[3] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Mathematics and its Applications, 364. Kluwer Academic Publishers Group, Dordrecht, 1996.
[4] K. L. Duggal and D. H. Jin, A classification of Einstein lightlike hypersurfaces of a Lorentzian space form, to appear in J. Geom. Phys.
[5] D. H. Jin, Einstein half lightlike submanifolds with a Killing co-screen distribution, Honam Math. J. 30 (2008), no. 3, 487-504.
[6] , A characterization of screen conformal half lightlike submanifolds, Honam Math. J. 31 (2009), no. 1, 17-23.
[7] D. N. Kupeli, On conjugate and focal points in semi-Riemannian geometry, Math. Z. 198 (1988), no. 4, 569-589.

Department of Mathematics
Dongguk University
Kyonguu 780-714, Korea
E-mail address: jindh@dongguk.ac.kr

[^0]: Received February 4, 2009
 2000 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
 Key words and phrases. real half lightlike submanifold, screen conformal, indefinite complex space form.

