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MODULE EXTENSION OF DUAL BANACH ALGEBRAS

Madjid Eshaghi Gordji, Fereydoun Habibian, and Ali Rejali

Abstract. This work was intended as an attempt to introduce and in-
vestigate the Connes-amenability of module extension of dual Banach al-
gebras. It is natural to try to study the weak∗-continuous derivations on
the module extension of dual Banach algebras and also the weak Connes-
amenability of such Banach algebras.

Introduction

In [6], B. E. Johnson introduced the notion of an amenable Banach algebra,
and proved that a locally compact group G is amenable if and only if its group
algebra L1(G) is amenable. The theory of amenable Banach algebras has been a
very active field of research ever since. Once of the deepest result in this theory
is due to Connes [2] and A. Haagerup [5]: a C∗-algebra is amenable if and only
if it is nuclear. In [11], S. Wassermann showed that a von Neumann algebra is
nuclear/amenable if and only if it is subhomogenuous [8]. This suggests that the
definition of amenability from [6] has to be modified to yield a sufficiently rich
theory for von Neumann algebras. A variant of that definition, one that takes
the dual space structure of von Neumann algebra into account, was introduced
in [7], but is most commonly associated with A. Connes paper [1]. For this
reason, we refer to this notion of amenability as Connes-amenability. The
definition of Connes-amenability makes sense for large class of Banach algebras
(called dual Banach algebras in [8]). Examples of dual Banach algebras are:
B(E), where E is a reflexive Banach space; M(G), where G is a locally compact
group; A∗∗, where A is an Arens regular Banach algebra.

This paper is organized as follows. Section 1 is devoted to the notations and
definitions which are needed throughout of the paper. The Connes-amenability
of module extension of dual Banach algebras is studied in Section 2. Finally in
Section 3, we investigate the weak Connes-amenability of module extension of
dual Banach algebras.
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1. Preliminaries

This section is preliminary in character. For a Banach algebra A, an A-
bimodule will always refer to a Banach A-bimodule X, that is a Banach space
which is algebraically an A-bimodule, and for which there is a constant CA,X >
0 such that

‖a.x‖, ‖x.a‖ ≤ CA,X‖a‖‖x‖ (a ∈ A, x ∈ X).

Let A be a Banach algebra and X be a Banach A-bimodule. Then X∗ is a
Banach A-bimodule by the operations,

〈ax∗, x〉 = 〈x∗, xa〉, 〈x∗a, x〉 = 〈x∗, ax〉,
where a ∈ A, x ∈ X and x∗ ∈ X∗.

Definition 1.1. Let A be a Banach algebra. A Banach A-bimodule E is called
dual if there is a closed submodule E∗ of E∗ such that E = (E∗)∗. E∗ is called
the predual of E. A Banach algebra A is called dual if it is dual as a Banach
A-bimodule.

Let A be a dual Banach algebra. A dual Banach A-bimodule E is called
normal if, for every x ∈ E, the maps

A −→ E, a 7→ a.x

and
A −→ E, a 7→ x.a

are weak∗-continuous.
Let A and B be dual Banach algebras and let ϕ : A −→ B be a weak∗-

continuous Banach algebra homomorphism. Then B is a normal A-bimodule
by the following module actions

a.b = ϕ(a)b, b.a = bϕ(a) (a ∈ A, b ∈ B).

We denote the above A-bimodule by Bϕ. Let X be a Banach A-bimodule. A
derivation from A into an A-bimodule X is a bounded linear map D such that
D(ab) = D(a).b+a.D(b) for all (a, b ∈ A). If x ∈ X, then δx : A −→ X defined
by

δx(a) = a.x− x.a (a ∈ A),

is a derivation. Such derivations are called inner. A Banach algebra A is
amenable if, for every A-bimodule X, every derivation D : A −→ X∗ is in-
ner, equivalently if H1(A, X∗) = {0} for every Banach A-bimodule X, where
the quotient space H1(A, X∗) of all continuous derivations from A into X∗

modulo the subspace of all inner derivations from A into X∗ is called the first
cohomology group with coefficients in X∗[3] (see [1] and [5] for more details).

Let A be a dual Banach algebra. A is called Connes-amenable if, for every
dual Banach A-bimodule X, every weak∗-continuous derivation D : A −→ X
is inner; or equivalently, H1

w∗(A, X) = {0}. This definition was introduced by
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V. Runde (see Section 4 of [9]). A dual Banach algebra A is weakly Connes-
amenable if every weak∗-continuous derivation from A into A is inner; or equiva-
lently, H1

w∗(A, A) = {0} [4]. The weak amenability of module extension Banach
algebras was studied by Y. Zhang in [12]. We define the module extensions of
dual Banach algebras and then we study the Connes-amenability and the weak
Connes-amenability of such Banach algebras.

2. Connes-amenability

In this section we give necessary and sufficient conditions for module exten-
sion of dual Banach algebras to be Connes-amenable.

Lemma 2.1. Let A be a Banach algebra and X be a Banach A-bimodule.
A⊕∞ X is a Banach algebra with the algebra product,

(a, x)(b, y) = (ab, ay + xb)

and with the norm,

‖(a, x)‖ = max{‖x‖, ‖a‖} (a ∈ A , x ∈ X).

Proof. It is easily seen that A ⊕∞ X is a Banach space. But A is a Banach
algebra, then there exists CA > 0 such that ‖ab‖ ≤ CA‖a‖‖b‖ for all a, b ∈ A
(see page 152 of [3] for more details). Also there is a constant CA,X > 0 such
that

‖a.x‖, ‖x.a‖ ≤ CA,X‖a‖‖x‖ (a ∈ A, x ∈ X).

Fix (a, x), (b, y) ∈ A ⊕∞ X. The proof falls naturally into four cases, but
we give the proof for one case, the other cases are similar. If ‖(a, x)‖ =
Max{‖x‖, ‖a‖} = ‖a‖ and ‖(b, y)‖ = Max{‖y‖, ‖b‖} = ‖b‖, then

‖ay + xb‖ ≤ ‖ay‖+ ‖xb‖ ≤ CA,X‖a‖‖y‖+ CA,X‖x‖‖b‖ ≤ 2CA,X‖a‖‖b‖.
Set C = Max{CA, 2CA,X}. Now, if Max{‖ab‖, ‖ay + xb‖} = ‖ab‖, then

‖(a, x)(b, y)‖ = ‖(ab, ay + xb)‖ = ‖ab‖ ≤ CA‖a‖‖b‖
= CA‖(a, x)‖‖(b, y)‖
≤ C‖(a, x)‖‖(b, y)‖.

If Max{‖ab‖, ‖ay + xb‖} = ‖ay + xb‖, then

‖(a, x)(b, y)‖ = ‖(ab, ay + xb)‖ = ‖ay + xb‖
≤ 2CA,X‖a‖‖b‖ ≤ C‖a‖‖b‖
= C‖(a, x)‖‖(b, y)‖.

Then (A ⊕∞ X, ‖ · ‖) is a Banach algebra. Also if we define a new norm on
A⊕∞ X, say, ‖|(a, x)‖| = C‖(a, x)‖, then (A⊕∞ X, ‖| · ‖|) is a Banach algebra
with

‖|(a, x)(b, y)‖| ≤ ‖|(a, x)‖|‖|(b, y)‖|. ¤
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We define a new class of dual Banach algebras. Let A be a dual Banach
algebra with predual A∗, and let X be a normal dual Banach A-bimodule with
predual X∗.

It is a simple matter to check that A∗ ⊕1 X∗ is a Banach space with the
norm

‖(a′, x′)‖ = ‖a′‖+ ‖x′‖ (a′ ∈ A∗ , x′ ∈ X∗).
and A ⊕∞ X = (A∗ ⊕1 X∗)∗. Since A is a dual Banach algebra and X is a
normal dual Banach A-bimodule, then clearly the multiplication in A ⊕∞ X
is separately weak∗-continuous. According to Exercise 4.4.1 of [9], we get the
following lemma.

Lemma 2.2. Let A and X be as above. Then A⊕∞X is a dual Banach algebra
with predual A∗ ⊕1 X∗.

The Banach algebra A⊕∞X in Lemma 2.2, is said to be the module extension
of dual Banach algebras.

Theorem 2.3. Let A be a dual Banach algebra. Then the following assertions
are equivalent:

(i) A is Connes-amenable.
(ii) For every dual Banach algebra B and every weak∗-continuous homomor-

phism ϕ : A −→ B, H1
w∗(A, Bϕ) = {0}.

(iii) For every dual Banach algebra B and every injective weak∗-continuous
homomorphism ϕ : A −→ B, H1

w∗(A, Bϕ) = {0}.
Proof. It is straightforward to verify (i) ⇒ (ii) ⇒ (iii). We prove (iii) ⇒ (i).
Let X be a normal dual Banach A-bimodule, and let D : A −→ X be a weak∗-
continuous derivation. Lemma 2.2 shows that the map

ϕ : a 7→ (a, 0), A −→ A⊕∞ X

is an injective weak∗-continuous homomorphism. Hence H1
w∗(A, ((A⊕∞ X)ϕ))

= {0}. We define D1 : A −→ A⊕∞ X by D1(a) = (0, D(a)). For each a, b ∈ A,

D1(ab) = (0, D(ab)) = (0, D(a)b + aD(b))

= (0, D(a))(b, 0) + (a, 0)(0, D(b))

= D1(a)ϕ(b) + ϕ(a)D1(b).

Therefore D1 is a weak∗-continuous derivation from A into (A⊕∞ X)ϕ. From
this we conclude that D1 is an inner derivation. On the other word, D1 = δ(b,x)

for some b ∈ A, x ∈ X. For every a ∈ A, we have

(0, D(a)) = D1(a) = δ(b,x)(a)

= ϕ(a)(b, x)− (b, x)ϕ(a)

= (a, 0)(b, x)− (b, x)(a, 0)

= (ab− ba, ax− xa).

Hence D = δx and A is Connes-amenable. ¤
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We are thus led to give the main result.

Theorem 2.4. Let A be a dual Banach algebra and let X be a reflexive Banach
A-bimodule. If for every x′ ∈ X∗ and a ∈ A, the mappings

(1) (x′⊗̂a). : b 7−→ (x′⊗̂ab) , .(x′⊗̂a) : b 7−→ (bx′⊗̂a); A −→ X∗⊗̂A,

are weak∗-weak continuous, then A ⊕∞ X is Connes-amenable if and only if
X = 0 and A is Connes-amenable.

Proof. Let A⊕∞ X be Connes-amenable and the mappings defined in (1), are
weak∗-weak continuous. We have to show that X = 0. It is easy to check that
X∗⊗̂A is a Banach A⊕∞ X-bimodule with the following module actions:

(x′⊗̂a).(b, x)= x′⊗̂ab, (b, x).(x′⊗̂a)= bx′⊗̂a, (x′⊗̂a ∈ X∗⊗̂A, (b, x) ∈ A⊕∞X).

Let

(bα, xα)
weak∗−−−→ (b, x) in A⊕∞ X,

hence bα

weak∗−−−→ b in A. Then for each x′ ∈ X∗ and each a ∈ A,,

bαx′⊗̂a
weakly−−−→ bx′⊗̂a in X∗⊗̂A.

From this, for each F ∈ (X∗⊗̂A)
∗
,

〈F.(bα, xα), x′⊗̂a〉 = 〈F, bαx′⊗̂a〉 −→ 〈F, bx′⊗̂a〉 = 〈F.(b, x), x′⊗̂a〉.
Consequently

F.(bα, xα)
weak∗−−−→ F.(b, x) in (X∗⊗̂A)

∗
.

Similarly

(bα, xα).F
weak∗−−−→ (b, x).F in (X∗⊗̂A)

∗
.

Thus (X∗⊗̂A)
∗

is a normal dual A ⊕∞ X-bimodule. Define D : A ⊕∞ X −→
(X∗⊗̂A)

∗
by;

〈D(b, x), x′⊗̂a〉 = 〈x′, ax〉 (x′⊗̂a ∈ X∗⊗̂A, (b, x) ∈ A⊕∞ X).

For each (b1, x1), (b2, x2) ∈ A⊕∞ X, and x′⊗̂a ∈ X∗⊗̂A, we have

〈D((b1, x1)(b2, x2)), x′⊗̂a〉
= 〈x′, a(b1x2 + x1b2)〉 = 〈x′, ab1x2〉+ 〈x′, ax1b2〉
= 〈D(b2, x2), x′⊗̂ab1〉+ 〈D(b1, x1), b2x

′⊗̂a〉
= 〈D(b2, x2), (x′⊗̂a)(b1, x1)〉+ 〈D(b1, x1), (b2, x2)(x′⊗̂a)〉
= 〈(b1, x1).(D(b2, x2)) + (D(b1, x1)).(b2, x2), x′⊗̂a〉.

Hence D is a derivation. Also if

(bα, xα)
weak∗−−−→ (b, x) in A⊕∞ X,
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then xα

weak∗−−−→ x in X. Since X is a normal dual A-bimodule, we have axα

weak∗−−−→
ax in X. On the other hand, X is reflexive, then axα

weakly−−−→ ax in X. Thus

〈D(bα, xα), x′⊗̂a〉 = 〈x′, axα〉 −→ 〈x′, ax〉 = 〈D(b, x), x′⊗̂a〉
for every x′⊗̂a ∈ X∗⊗̂A. Therefore D is weak∗-continuous. Connes-amenability
of A⊕∞X implies that D = δF for some F ∈ (X∗⊗̂A)

∗
. For each x′⊗̂a ∈ X∗⊗̂A

and (b, x) ∈ A⊕∞ X, we have

〈x′, ax〉 = 〈D((b, x)), x′⊗̂a〉
= 〈(b, x).F − F.(b, x), x′⊗̂a〉
= 〈F, (x′⊗̂a).(b, x)− (b, x)(x′⊗̂a)〉
= 〈F, x′⊗̂ab− bx′⊗̂a〉.

Then 〈x′, ax〉 = 0 for each a ∈ A, x ∈ X and x′ ∈ X∗. We have to show that
AX = X. To this end, we know that if A⊕∞ X is Connes-amenable, then it is
unital [9]. Let (e, x) be the unite element of A ⊕∞ X. It is easy to show that
x = 0 and ey = y for every y ∈ X, and this finishes the proof. ¤
Corollary 2.5. Let A be a dual Banach algebra and let X be a non-trivial
Banach A-bimodule. If A and X are reflexive, then A ⊕∞ X is not Connes-
amenable.

Corollary 2.6. Let A be a non-trivial reflexive dual Banach algebra. Then the
Banach algebras A⊕∞ A and A⊕∞ A∗ are not Connes-amenable.

3. Weak Connes-amenability

Let A be a dual Banach algebra with predual A∗, and let X be a normal
dual Banach A-bimodule with predual X∗. In this section we investigate the
weak Connes-amenability of A⊕∞ X.

Lemma 3.1. Let X be a normal, dual Banach A-bimodule and T : X −→ X
be a weak∗-continuous A-bimodule morphism. Then T̄ : A⊕∞ X −→ A⊕∞ X,
defined by T̄ ((a, x)) = (0, T (x)) is a weak∗-continuous derivation. T̄ is inner
if and only if there exists b ∈ A such that ba = ab for each a ∈ A and T (x) =
xb− bx for all x ∈ X.

Proof. Let (a, x), (b, y) ∈ A⊕∞ X, we have

T̄ ((a, x).(b, y)) = T̄ ((ab, ay + xb)) = (0, T (ay + xb)) = (0, aT (y)) + (0, T (x)b).

On the other hand, T̄ ((a, x)).(b, y) = (0, T (x)).(b, y) = (0, T (x)b), similarly

(a, x).T̄ ((b, y)) = (a, x).(0, T (x)) = (0, aT (y)),

and hence T̄ is a derivation. From weak∗-continuity of T , it is clear that T̄ is
weak∗-continuous. If T̄ is inner, then there exists ξ = (b, y) ∈ A ⊕∞ X such
that T̄ ((a, x)) = (a, x).ξ − ξ.(a, x). In particular (0, 0) = (a, 0).ξ − ξ.(a, 0) and
(0, T (x)) = (0, x).ξ − ξ.(0, x). Then (0, 0) = (ab− ba, ay − ya) and (0, T (x)) =
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(0, xb − bx) and so there exists b ∈ A such that ba = ab for a ∈ A and
T (x) = xb − bx for all x ∈ X. Conversely, if there exists b ∈ A such that
ba = ab for a ∈ A and T (x) = xb− bx for all x ∈ X, then

T̄ ((a, x)) = (0, T (x)) = (ab− ba, xb− bx) = (a, x).(b, 0)− (b, 0).(a, x).

Therefore T̄ is inner. ¤

Lemma 3.2. Let A be a dual Banach algebra and let X be a normal, dual
Banach A-bimodule. If D : A −→ X is a weak∗-continuous derivation, then
D̄ : (A ⊕∞ X) −→ (A ⊕∞ X) defined by D̄((a, x)) = (0, D(a)), is a weak∗-
continuous derivation. Furthermore, D̄ is inner if and only if D is inner.

Proof. It is straightforward to check that D̄ is a weak∗-continuous derivation.
Let D̄ be inner. Then there exists ξ = (b, y) ∈ A⊕∞ X such that D̄((a, x)) =
(a, x).ξ − ξ.(a, x). In particular

(0, D(a)) = D̄((a, 0)) = (a, 0).(b, y)− (b, y).(a, 0) = (ab− ba, ay − ya),

then D(a) = ay − ya for some y ∈ X and hence D is inner. The same proof
works for the converse. ¤

Theorem 3.3. Let A be a dual Banach algebra and let X be a normal, dual
Banach A-bimodule. Then A⊕∞ X is weakly Connes-amenable if and only if
the following conditions hold:

1. The only weak∗-continuous derivations D : A −→ A for which there is a
weak∗-continuous operator T : X −→ X such that T (ax) = D(a)x+aT (x) and
T (xa) = xD(a) + T (x)a (a ∈ A, x ∈ X), are the inner derivations.

2. H1
w∗(A, X) = {0}.

3. The only weak∗-continuous A-bimodule morphism Γ : X −→ A for which
xΓ(y) + Γ(x)y = 0 (x, y ∈ X), is zero.

4. For every weak∗-continuous A-bimodule morphism T : X −→ X, there
exists b ∈ A for which ab = ba for a ∈ A and T (x) = xb− bx for x ∈ X.

Proof. Denote by τ1 and τ2 the inclusion mappings from, respectively, A and X
into A⊕∞ X, and denote by ∆1 and ∆2 the natural projections from A⊕∞ X
onto A and X, respectively. Then ∆1 and ∆2 are A-bimodule morphisms, so τ1

and τ2 are algebra homomorphisms. To prove the sufficiency we assume that
Conditions 1-4 hold. Let D : A ⊕∞ X −→ A ⊕∞ X be a weak∗-continuous
derivation. Then ∆1 ◦D ◦ τ1 : A −→ A and ∆2 ◦D ◦ τ1 : A −→ X are weak∗-
continuous derivations. Now we show that Γ = ∆1 ◦D ◦ τ2 : X −→ A is trivial.
By Condition 3 it suffices to show that Γ is an A-bimodule morphism satisfying
xΓ(y) + Γ(x)y = 0 (x, y ∈ X). We have

0 = D((0, 0)) = D((0, x).(0, y))

= D((0, x)).(0, y) + (0, x).D((0, y))

= (0, Γ(x)y) + (0, xΓ(y)).
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On the other hand,

Γ(ax) = ∆1 ◦D((0, ax)) = ∆1 ◦D((a, 0).(0, x))

= ∆1(D((a, 0)).(0, x) + (a, 0).D((0, x)))

= ∆1((a, 0).D((0, x))) = ∆1(aD ◦ τ2(x))

= aΓ(x).

Similarly, Γ(xa) = Γ(x)a. Then Γ is an A-bimodule morphism such that
xΓ(y) + Γ(x)y = 0. Therefore Γ is trivial. Now let T = ∆2 ◦D ◦ τ2 : X −→ X
and D1 = ∆1 ◦D ◦ τ1 : A −→ A. For every a ∈ A and x ∈ X,

(1)

(0, T (ax)) = (0,∆2 ◦D((0, ax)) = D((0, ax))

= D((a, 0).(0, x)) = D((a, 0)).(0, x) + (a, 0).D((0, x))

= (0, D1(a)x) + a(0, T (x)) = (0, D1(a)x + aT (x)).

This gives T (ax) = D1(a)x + aT (x). Similarly, for every a ∈ A and x ∈ X, we
have

(2) (0, T (xa)) = (0, xD1(a) + T (x)a).

Therefore by Condition 1, D1 = ∆1 ◦D ◦ τ1 is inner.
Now suppose that b ∈ A satisfies D1(a) = ab− ba for a ∈ A. Let T1 : X −→

X be defined by T1(x) = xb − bx for x ∈ X. Then T − T1 : X −→ X is a
weak∗-continuous A-bimodule morphism. In fact, from (1), for every a ∈ A and
x ∈ X, we have

(T − T1)(ax) = T (ax)− T1(ax)

= (D1(a)x + aT (x))− (axb− bax)

= (ab− ba)x + aT (x)− (axb− bax)

= a(bx− xb) + aT (x) = a(T − T1)(x).

Similarly, T − T1 is a right A-bimodule morphism. From Condition 4 there is
c ∈ A such that ac = ca for a ∈ A and (T − T1)(x) = xc − cx for x ∈ X. By
Lemma 3.1, we know that

T − T1 : (a, x) −→ (0, (T − T1)(x)), A⊕∞ X −→ A⊕∞ X

is an inner derivation. Since ∆2 ◦ D ◦ τ1 : A −→ X is a weak∗-continuous
derivation, it is inner by Condition 2. By Lemma 3.2, the mapping

∆2 ◦D ◦ τ1 : (a, x) −→ (0, ∆2 ◦D ◦ τ1(a)),A⊕∞ X −→ A⊕∞ X

is also an inner derivation. Since Γ is trivial, we now have

D((a, x)) = (D1(a), ∆2 ◦D ◦ τ1(a) + T (x))

= ∆2 ◦D ◦ τ1((a, x)) + (T − T1)((a, x)) + (D1(a), T (x)).

Since

(D1(a), T1(x)) = (ab− ba, xb− bx) = (a, x).(u, 0)− (u, 0).(a, x)
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for a ∈ A and x ∈ X, it gives an inner derivation from A⊕∞ X into A⊕∞ X.
Hence as a sum of three inner derivations, D is inner. According to Condi-
tions 1-4, A⊕∞ X is weakly Connes-amenable.

Now we prove the necessity. Suppose that A ⊕∞ X is weakly Connes-
amenable. Let D : A −→ A be a weak∗-continuous derivation with the property
given in Condition 1. We define D̄ : A⊕∞ X −→ A⊕∞ X by

D̄((a, x)) = (D(a), T (x)) (a, x) ∈ (A⊕∞ X).

Then D̄ is a weak∗-continuous derivation. But D̄ is inner, so there exists
(b, y) ∈ A⊕∞ X such that

D̄((a, x)) = (a, x).(b, y)− (b, y).(a, x),

and then for some b ∈ A, we have (D(a), T (x)) = (ab−ba, xb−bx). Thus D(a) =
ab−ba for all a ∈ A, i.e., D is inner, and Condition 1 holds. Condition 2 follows
from Lemma 3.2. Let now Γ : X −→ A be an arbitrary weak∗-continuous A-
bimodule morphism for which xΓ(y) + Γ(x)y = 0 (x, y ∈ X). Define Γ̄ :
A ⊕∞ X −→ A ⊕∞ X by Γ̄((a, x)) = (Γ(x), 0) then Γ̄ is a weak∗-continuous
derivation, but Γ̄ is inner, hence there exists ξ = (b, y) ∈ A ⊕∞ X such that
Γ̄((a, x)) = (a, x).(b, y)− (b, y).(a, x). In particular

(Γ(x), 0) = Γ̄((0, x)) = (0, x).(b, y)− (b, y).(0, x) = (0, xb− bx)

and then Γ = 0, and Condition 3 holds. Let T : X −→ X be a weak∗-
continuous A-bimodule morphism. D̄ : A ⊕∞ X −→ A ⊕∞ X defined by
D̄((a, x)) = (0, T (x)) is a weak∗-continuous derivation, and Condition 4 holds
by Lemma 3.1. ¤

Let X = A. If in Condition 4 of above theorem, we suppose that T = id :
A −→ A, thus we get:

Corollary 3.4. Let A be a non-trivial dual Banach algebra A. Then,

H1
w∗(A⊕∞ A,A⊕∞ A) 6= {0}.

Lemma 3.5. Let X and Y be dual Banach spaces. Then every weak∗-contin-
uous linear map from X into Y is bounded.

Proof. Let T : X −→ Y be an unbounded linear map. Then there exists
a sequence {xn} in X such that limn ‖xn‖ = 0 and limn ‖T (xn)‖ = ∞. By

uniform boundedness theorem ([10]), T (xn)
weak∗−−9 0. On the other hand weak∗-

limn xn = 0, therefore T is not weak∗-continuous. ¤

Let us mention an important consequence of Corollary 3.4 and Lemma 3.5.

Corollary 3.6. Let A be a non-trivial dual Banach algebra. Then

H1(A⊕∞ A, A⊕∞ A) 6= {0}.
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Let A be a dual Banach algebra, and let X = A by module actions

a.x = ax, x.a = 0, (a ∈ A, x ∈ X),

We follow the notation of [12] to show that X by A0.

Corollary 3.7. A is unital and weakly Connes-amenable if and only if A⊕∞A0

is weakly Connes-amenable.

Proof. Let A be a unital weakly Connes-amenable Banach algebra. Since A is
weakly Connes-amenable, then the Conditions 1 and 2 in Theorem 3.3, hold.
But A is unital then Conditions 3 and 4 hold when X = A0. For the converse
let A ⊕∞ A0 be weakly Connes-amenable, then by Condition 2, A is weakly
Connes-amenable. The mapping id : A0 −→ A0 is a weak∗-continuous A-
bimodule morphism, then by Condition 4 of Theorem 3.3, there exists b ∈ A
such that ab = ba for a ∈ A, and x = id(x) = x.b− b.x = bx for x ∈ A0. Thus
b is the unit element of A. ¤
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