DOI QR코드

DOI QR Code

Cathodic Reduction of Cu2+ and Electric Power Generation Using a Microbial Fuel Cell

  • Wang, Zejie (Department of Environmental Engineering, Daejeon University) ;
  • Lim, Bong-Su (Department of Environmental Engineering, Daejeon University) ;
  • Lu, Hui (Department of Environmental Engineering, Daejeon University) ;
  • Fan, Juan (Department of Environmental Engineering, Daejeon University) ;
  • Choi, Chan-Soo (Department of Applied Chemistry, Daejeon University)
  • Received : 2010.03.15
  • Accepted : 2010.06.01
  • Published : 2010.07.20

Abstract

When $Cu^{2+}$ was used as an electron acceptor, removal of $Cu^{2+}$ was achieved from the synthesized wastewater (SW) in the cathode compartment of a microbial fuel cell (MFC). By addition of $KNO_3$, the different initial pH of the SW showed no effect on the removal efficiency of $Cu^{2+}$. For $Cu^{2+}$ concentration of 50 mg/L the removal efficiencies were found to be 99.82%, 99.95%, 99.58%, and 99.97% for the $KNO_3$ concentrations of 0, 50, 100 and 200 mM, and to be 99.4%, 99.9%, 99.7%, and 99.7% for pH values of 2, 3, 4, and 5, respectively. More than 99% $Cu^{2+}$ was removed for the $Cu^{2+}$ concentrations of 10, 50, and 100 mg/L, while only 60.1% of $Cu^{2+}$ was removed for the initial concentration of 200 mg/L (pH 3). The maximum power density was affected by both $KNO_3$ concentration and initial concentration of $Cu^{2+}$. It was increased by a factor of 1.5 (from 96.2 to 143.6 mW/$m^2$) when the $KNO_3$ concentration was increased from 0 to 200 mM (50 mg/L $Cu^{2+}$), and by a factor of 2.7 (from 118 to 319 mW/$m^2$) when $Cu^{2+}$ concentration was increased from 10 to 200 mg/L (pH 3).

Keywords

References

  1. Stanley, L. C.; Ogden, K. L. J. Environ. Manage. 2003, 69, 289. https://doi.org/10.1016/j.jenvman.2003.09.009
  2. Zhu, S. M.; Yang, N.; Zhang, D. Mater. Chem. and Phys. 2009, 113, 784. https://doi.org/10.1016/j.matchemphys.2008.08.025
  3. Ruiz, M. C.; Padilla, R. Hydrometallurgy 1998, 48, 313. https://doi.org/10.1016/S0304-386X(98)00006-1
  4. González, O. A.; Alonso, F. N.; Salas, A. U. Miner. Eng. 2009, 22, 324. https://doi.org/10.1016/j.mineng.2008.09.004
  5. Shukla, S. R.; Pai, S. R. Separation and Purification Technol. 2005, 43, 1. https://doi.org/10.1016/j.seppur.2004.09.003
  6. El-Ashtoukhy, E. S. Z.; Amin, N. K.; Abdelwahab, O. A. Desalination 2008, 223, 162. https://doi.org/10.1016/j.desal.2007.01.206
  7. Zhao, F.; Rahunen, N.; Varcoe, J. R.; Chandra, A.; Avignone- Rossa, C.; Thumser, A. E.; Slade, R. C. T. Environ. Sci. Technol. 2008, 42, 4971. https://doi.org/10.1021/es8003766
  8. He, Z.; Kan, J. J.; Wang, Y. B.; Huang, Y. L.; Mansfeld, F.; Nealson, K. H. Environ. Sci. Technol. 2009, 43, 3391. https://doi.org/10.1021/es803492c
  9. Mohan, S. V.; Raghavulu, S. V.; Srikanth, S.; Sarma, P. N. Current Science 2007, 92(12), 1720.
  10. Kim, J. R.; Cheng, S. A.; Oh, S. E.; Logan, B. E. Envrion. Sci. Technol. 2007, 41, 1004. https://doi.org/10.1021/es062202m
  11. Heijne, A. T.; Hamelers, H. V. M.; Wilde, V. D.; Rozendal, R. A.; Buisman, C. J. N. Environ. Sci. Technol. 2006, 40, 5200. https://doi.org/10.1021/es0608545
  12. Ren. Z.; Steinberg, L. M.; Regan, J. M. Water Sci. & Technol. 2008, 58(3), 617. https://doi.org/10.2166/wst.2008.431
  13. Feng, Y. J.; Wang, X.; Logan, B. E.; Lee, H. Appl. Microbiol. Biotechnol. 2008, 78, 873. https://doi.org/10.1007/s00253-008-1360-2
  14. Clauwaert, P.; David, van der H.; Vwestraete, W. Biotechnol. Lett. 2008, Doi: 10.1007/S10529-008-9778-2.
  15. You, S. J.; Zhao, Q. L.; Zhang, J. N.; Jiang, J. Q.; Zhao, S. Q. J. Power Sources 2006, 162, 1409. https://doi.org/10.1016/j.jpowsour.2006.07.063
  16. Mohan, S. V.; Mohanakrishna, G.; Reddy, B. P.; Saravanan, R.; Sarma, P. N. J. Biochem. Eng. 2008, 39, 121. https://doi.org/10.1016/j.bej.2007.08.023
  17. Li, Z. J.; Zhang, X. W.; Lei, L. C. Proc. Biochem. 2008, 43, 1352. https://doi.org/10.1016/j.procbio.2008.08.005
  18. Clauwaert, P.; Rabaey, K.; Aelterman, P.; Schamphelaire, L. D.; Pham, T. H.; Boeckx, P.; Boon, N.; Verstraete, W. Environ. Sci. Technol. 2007, 41, 3354. https://doi.org/10.1021/es062580r
  19. Wang, X.; Cheng, S. A.; Feng, Y. J.; Merrill, M. D.; Saito, T.; Logan, B. E. Environ. Sci. Technol. 2009, 43, 6870.
  20. Ramasamy, R. P.; Ren, Z. Y.; Mench, M. M.; Regan, J. M. Biotechnol. Bioeng. 2008, 101(1), 101. https://doi.org/10.1002/bit.21878
  21. Liu, H.; Cheng, S. A.; Logan, B. E. Environ. Sci. Technol. 2005, 39, 5488. https://doi.org/10.1021/es050316c
  22. You, S. J.; Zhao, Q. L.; Jiang, J. Q.; Zhang, J. N.; Zhao, S. Q. J. Environ. Sci. and Health Part A 2006, 41, 2721. https://doi.org/10.1080/10934520600966284
  23. Rabaey, K.; Verstraete, W. Trends Biotechnol. 2005, 23(6), 291. https://doi.org/10.1016/j.tibtech.2005.04.008
  24. Gable, B. M.; Zhu, A. W.; Shiflet, G. J., Jr.; Starke, E. A. Computer Coupling of Phase Diagrams and the Thermochemistry 2008, 32, 256. https://doi.org/10.1016/j.calphad.2007.08.003

Cited by

  1. Cathode Reactions and Applications in Microbial Fuel Cells: A Review vol.42, pp.23, 2012, https://doi.org/10.1080/10643389.2011.592744
  2. Polarization behavior of microbial fuel cells under stack operation vol.59, pp.18, 2014, https://doi.org/10.1007/s11434-014-0243-4
  3. Electric power generation from treatment of food waste leachate using microbial fuel cell vol.22, pp.2, 2016, https://doi.org/10.4491/eer.2016.061
  4. Cost-effective copper removal by electrosorption powered by microbial fuel cells vol.39, pp.3, 2016, https://doi.org/10.1007/s00449-015-1533-1
  5. Prototype of a scaled-up microbial fuel cell for copper recovery vol.92, pp.11, 2017, https://doi.org/10.1002/jctb.5353
  6. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate vol.7, pp.None, 2014, https://doi.org/10.1186/1754-6834-7-9
  7. The Remediation of Chromium (VI)-Contaminated Soils Using Microbial Fuel Cells vol.25, pp.1, 2010, https://doi.org/10.1080/15320383.2016.1085833
  8. Silver Recovery and Power Generation from Ammonia Chelated Silver Solution in a Bio-Electrochemical Reactor vol.216, pp.None, 2010, https://doi.org/10.1088/1757-899x/216/1/012004
  9. Bio-electrochemical treatment of food wastewater and copper recovery from copper-contaminated plant with electricity production using biomaterial anode vol.3, pp.3, 2010, https://doi.org/10.1007/s42108-019-00020-0
  10. Assessment of Heavy Metal Removal in Different Bioelectrochemical Systems: A Review vol.24, pp.3, 2010, https://doi.org/10.1061/(asce)hz.2153-5515.0000500
  11. Continuous removal of heavy metals by coupling a microbial fuel cell and a microbial electrolytic cell vol.11, pp.4, 2010, https://doi.org/10.12989/mwt.2020.11.4.283
  12. Reduction of copper and generation of energy in double chamber microbial fuel cell using Shewanella putrefaciens vol.55, pp.13, 2010, https://doi.org/10.1080/01496395.2019.1625919
  13. Metal removal and recovery using bioelectrochemical technology: The major determinants and opportunities for synchronic wastewater treatment and energy production vol.270, pp.None, 2020, https://doi.org/10.1016/j.jenvman.2020.110826
  14. Microbial Electrochemical System: A Sustainable Approach for Mitigation of Toxic Dyes and Heavy Metals from Wastewater vol.25, pp.2, 2021, https://doi.org/10.1061/(asce)hz.2153-5515.0000590
  15. Z-scheme MoO3 anchored-hexagonal rod like ZnO/Zn photoanode for effective wastewater treatment, copper reduction accompanied with electricity production in sunlight-powered photocatalytic f vol.265, pp.None, 2010, https://doi.org/10.1016/j.seppur.2021.118495
  16. Bioelectrochemical technology for recovery of silver from contaminated aqueous solution: a review vol.28, pp.45, 2021, https://doi.org/10.1007/s11356-020-10065-y