DOI QR코드

DOI QR Code

Propagating Spiral Waves Obtained in a Catalyst-Immobilized Gel Membrane by the Belousov-Zhabotinsky Reaction System

  • Kim, Bong-Seong (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Jo, Eun-Ae (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Basavaraja, C. (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Basic Science, Inje University)
  • Received : 2010.03.11
  • Accepted : 2010.05.15
  • Published : 2010.07.20

Abstract

The formation of diverse spiral waves was studied in a polyacrylamide gel membrane with ruthenium(4-vinyl-4'-methyl-2,2'-bipyridine)bis(2,2'-bipyridine)bis(hexafluorophosphate) by a gas-free Belousov-Zhabotinisky (BZ) reaction system containing 1,4-cyclohexanedione (1,4-CHD). The gel membrane was found to be receptive for observing propagating waves since a clearer wave-train is obtained during a long reaction time without any disturbance from the immobilized metal catalyst which can be dissolved into the highly acidic solution of the BZ system. The distinctive waves in the system basically depend on both $BrO_3$ and 1,4-CHD in the initial phase, and are influenced by the intensity of illumination of visible light.

Keywords

References

  1. Kapral, R., Showalter, K., Eds.; Chemical Waves and Patterns; Kluwer Academic Publishers: Netherlands, 1995.
  2. Cross, M. C.; Hohenberg, P. C. Rev. Mod. Phys. 1993, 65, 851. https://doi.org/10.1103/RevModPhys.65.851
  3. Swinney, H. L., Krinsky, V. I., Eds.; Physica D; 1991; Vol. 49.
  4. Winfree, A. T. The Geometry of Biological Time; Springer: Heidelberg, 2000.
  5. Field, R. J., Burger, M., Eds.; Oscillations and Traveling Waves in Chemical Systems; Wiley-Interscience: New York, 1985.
  6. Agladze, K.; Thouvenel-Romans, S.; Steinbock, O. J. Phys. Chem. A 2001, 105, 7356. https://doi.org/10.1021/jp011294t
  7. Bertram, M.; Masere, J.; Pojman, J. A.; Volke, F. Polym. Sci. A 2001, 39, 1075. https://doi.org/10.1002/1099-0518(20010401)39:7<1075::AID-POLA1084>3.0.CO;2-X
  8. Hohnson, A.; Brighm, E. S.; Oliver, P. J.; Moluk, T. E. Chem. Mater. 1997, 9, 2448. https://doi.org/10.1021/cm9703278
  9. Schluter, A. D., Ed.; Materials Synthesis and Technology, A Comprehensive Treatment; Wiley-VCH: Weinheim, New York, 1999.
  10. Orlandini, E.; Stella, A. L.; Vanderzande, C. V. J. Stat. Phys. 2004, 115, 681. https://doi.org/10.1023/B:JOSS.0000019820.70798.ed
  11. Persijn, J. P.; Van Duijn, P. Histochemistry and Cell Biology 1961, 2, 283. https://doi.org/10.1007/BF00736505
  12. Bensemann, I. T.; Fialkowski, M.; Grzybowski, B. A. J. Phys. Chem. B 2005, 109, 2774. https://doi.org/10.1021/jp047885b
  13. Bishop, K. J. M.; Fialkowski, M.; Grazybowski, B. A. J. Am. Chem. Soc. 2005, 127, 15943. https://doi.org/10.1021/ja054851o
  14. Huh, D. S.; Choe, S. J.; Kim, M. S. React. Kinet. Catal. Lett. 2001, 74, 11. https://doi.org/10.1023/A:1014130907392
  15. Wang, J.; Yadav, K.; Zhao, B.; Gao, Q. A.; Huh, D. S. J. Chem. Phys. 2004, 10138, 121.
  16. Bansagi, T.; Palczewski, J. C.; Steinbock, O. J. Phys. Chem. A 2007, 111, 2492. https://doi.org/10.1021/jp068425g
  17. Klug, J. J. Mol. Biol. 2004, 335, 2.
  18. Yoshida, R.; Kokufuta, E.; Yamaguchi, T. J. Am. Chem. Soc. 1996, 118, 5234.
  19. Vanag, V. K. Physics-Uspekhi. 2004, 47, 923. https://doi.org/10.1070/PU2004v047n09ABEH001742
  20. Maselko, J.; Reckley, J. S.; Showalter, K. J. Phys. Chem. 1989, 93, 2774. https://doi.org/10.1021/j100344a016
  21. Yoshikawa, K.; Aihara, R.; Agladze, K. Phys. Chem. 1989, 102, 7649.
  22. Kurin-Csorgei, K.; Koros, E. Kinet. Catal. Lett. 1995, 54, 217. https://doi.org/10.1007/BF02071201
  23. Kurin-Csörgei, K.; Zhabotinsky, A. M.; Orban, M.; Epstein, I. R. J. Phys. Chem. A 1997, 101, 6827. https://doi.org/10.1021/jp970763h
  24. Kurin-Csörgei, K.; Zhabotinsky, A. M.; Orban, M.; Epstein, I. R. J. Phys. Chem. 1996, 100, 5393. https://doi.org/10.1021/jp953356j
  25. Kurin-Csorgei, K.; Szalai, I.; Molna'r-Perl, I.; Koros, E. Kinet. Catal. Lett. 1994, 53, 115. https://doi.org/10.1007/BF02070120
  26. Szalai, I.; Körös, E. J. Phys. Chem. A 1998, 102, 6892. https://doi.org/10.1021/jp9818737
  27. Huh, D. S.; Kim, Y. J.; Kim, H. S.; Kang, J. K.; Wang, J. Phys. Chem. Chem. Phys. 2003, 5, 3188. https://doi.org/10.1039/b304807a
  28. Panfilov, A. V. Chaos 1998, 8, 57. https://doi.org/10.1063/1.166287
  29. Tanaka, T. Phys. Rev. Lett. 1978, 40, 820. https://doi.org/10.1103/PhysRevLett.40.820
  30. Hirokawa, Y.; Tanaka, T. J. Chem. Phys. 1981, 81, 6379. https://doi.org/10.1063/1.447548
  31. Kawasaki, H.; Sasaki, S.; Maeda, H. J. Chem. Phys. 1997, 101, 5089. https://doi.org/10.1021/jp962809x
  32. Tanaka, T.; Nishio, I.; Sun, S. T.; Ueno-Nishio, S. Science 1982, 218, 467. https://doi.org/10.1126/science.218.4571.467
  33. Schild, H. G. Prog. Polym. Sci. 1992, 17, 163. https://doi.org/10.1016/0079-6700(92)90023-R
  34. Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Nature 1995, 374, 240. https://doi.org/10.1038/374240a0
  35. Yoshida, R.; Takahashi, T.; Yamaguchi, T.; Ichijo, H. J. Am. Chem. Soc. 1996, 118, 5234.
  36. Yoshida, R.; Kokufuta, E.; Yamaguchi, T. Chaos 1999, 9, 260. https://doi.org/10.1063/1.166402
  37. Yoshida, R.; Takahashi, T.; Yamaguchi, T.; Ichijo, H. Adv. Mater. 1997, 9, 175. https://doi.org/10.1002/adma.19970090219
  38. Kaern, M.; Menzinger, M.; Hunding, A. Biophys. Chem. 2000, 87, 121. https://doi.org/10.1016/S0301-4622(00)00181-2
  39. Petrov, V.; Ouyang, Q.; Swinney, H. L. Nature 1997, 388, 655. https://doi.org/10.1038/41732
  40. Vanag, V. K.; Yang, L.; Dolnik, M.; Zhabotinsky, A. M.; Epstein, I. R. Nature 2000, 406, 389. https://doi.org/10.1038/35019038
  41. Vanag, V. K.; Zhabotinsky, A. M.; Epstein, I. R. Phys. Rev. Lett. 2001, 86, 552. https://doi.org/10.1103/PhysRevLett.86.552
  42. Wang, J.; Kádár, S.; Jung, P.; Showalter, K. Phys. Rev. Lett. 1999, 82, 855. https://doi.org/10.1103/PhysRevLett.82.855
  43. Kadar, S.; Wang, J.; Showalter, K. Nature 1998, 391, 770. https://doi.org/10.1038/35814
  44. Kuhnert, L.; Agladze, K. I.; Krinsky, V. I. Nature 1989, 337, 244. https://doi.org/10.1038/337244a0
  45. Steinbock, O.; Zykov, V. S.; Müller, S. C. Nature 1993, 366, 322. https://doi.org/10.1038/366322a0