DOI QR코드

DOI QR Code

Polystyrene Supported Al(OTf)3: a Stable, Efficient, Selective, and Reusable Catalyst for Sulfonylation of Arenes with Sulfonic Acids

  • Received : 2010.02.14
  • Accepted : 2010.04.28
  • Published : 2010.07.20

Abstract

Cross-linked polystyrene supported aluminium triflate (Ps-Al(OTf)$_3$) was found to be an efficient and chemoselective heterogeneous Lewis acid catalyst for the direct conversion of arenes to sulfones using sulfonic acids as sulfonylating agents. The solid acid catalyst is stable (as a bench top catalyst) and can be easily recovered and reused without appreciable change in its efficiency.

Keywords

References

  1. Michaely, W. J.; Kraatz, G. W. US Patent 4780127, 1988 (CAN:1989, 111, P 129017a).
  2. Padwa, A.; Bullock, W. H.; Dyszlewski, A. D. J. Org. Chem. 1990, 55, 955. https://doi.org/10.1021/jo00290a029
  3. Block, E. Angew Chem., Int. Ed. Engl. 1992, 31, 1135. https://doi.org/10.1002/anie.199211351
  4. Mackinnon, S. M.; Wang, J. Y. Macromolecules 1998, 31, 7970. https://doi.org/10.1021/ma9803640
  5. McMohan, J. B.; Gulakowsky, R. J.; Weislow, O. S.; Schoktz, R. J.; Narayanan, V. L.; Clanton, D. J.; Pedemonte, R.; Wassmundt, F. W.; Buckheit, R. W.; Decker, W. D.; White, E. L.; Bader, J. P.; Boyd, M. R. Antimicrob. Agents Chemother. 1993, 37, 754. https://doi.org/10.1128/AAC.37.4.754
  6. Richards, I. C.; Thomas, P. S. Pestic. Sci. 1990, 30, 275. https://doi.org/10.1002/ps.2780300304
  7. Dinsmore, C. J.; Williams, T. M.; O’Neill, T. J.; Liu, D.; Rands, E.; Culberson, J. C.; Lobell, R. B.; Koblan, K. S.; Kohl, N. E.; Gibbs, J. B.; Oliff, A. I.; Graham, S. L.; Hartman, C. D. Bioorg. Med. Chem. Lett. 1999, 9, 3301. https://doi.org/10.1016/S0960-894X(99)00605-8
  8. Jensen, R.; Goldman, G. In Friedel-Crafts and Related Reactions; Olah, G., Ed.; Wiley Interscience: New York, 1964; Vol. III, p 1319.
  9. Simpkins, N. S. Sulfones in Organic Synthesis; Pergamon Press: Oxford, 1993.
  10. Olah, G. A.; Kobayashi, S.; Nishimura, J. J. Am. Chem. Soc. 1973, 95, 564. https://doi.org/10.1021/ja00783a041
  11. Choudhary, B. M.; Chowdari, N. S.; Kantam, M. L. J. Chem. Soc., Perkin Trans 1 2000, 16, 2689.
  12. Singh, R. P.; Kamble, R. M.; Chanda, K. L.; Saravanan, P.; Singh, V. K. Tetrahedron Lett. 2001, 57, 241. https://doi.org/10.1016/S0040-4020(00)01005-X
  13. Frost, C. G.; Hartley, J. P.; Whittle, A. J. Synlett 2001, 6, 830.
  14. Yadav, J. S.; Reddy, B. V. S.; Krishna, A. D.; Swamy, T. Tetrahedron Lett. 2003, 44, 6055. https://doi.org/10.1016/S0040-4039(03)01507-7
  15. Garzya, V.; Forbes, I. T.; Lauru, S.; Maragni, P. Tetrahedron Lett. 2004, 45, 1499. https://doi.org/10.1016/j.tetlet.2003.12.028
  16. Singh, D. U.; Singh, P. R.; Samant, S. D. Tetrahedron Lett. 2004, 45, 9079. https://doi.org/10.1016/j.tetlet.2004.10.039
  17. Alexander, M. V.; Khandekar, A. C.; Samant, S. D. J. Mol. Catal. A: Chem. 2004, 223, 75. https://doi.org/10.1016/j.molcata.2003.10.066
  18. Parvanak Boroujeni, K.; Tamami, B. Catal. Commun. 2007, 8, 1191. https://doi.org/10.1016/j.catcom.2006.10.028
  19. Bahrami, K.; Khodei, M. M.; Shahbazi, F. Tetrahedron Lett. 2008, 49, 3931. https://doi.org/10.1016/j.tetlet.2008.04.051
  20. Cooke, M.; Clark, J.; Breeden, S. J. Mol. Catal. A: Chem. 2009, 303, 132. https://doi.org/10.1016/j.molcata.2009.01.014
  21. De Noronha, R. G.; Fernandes, A. C.; Romao, C. C. Tetrahedron Lett. 2009, 50, 1407. https://doi.org/10.1016/j.tetlet.2009.01.039
  22. Graybill, B. M. J. Org. Chem. 1967, 32, 2931. https://doi.org/10.1021/jo01284a075
  23. Eaton, P. E.; Caqrlson, G. R.; Lee, J. T. J. Org. Chem. 1973, 38, 4071. https://doi.org/10.1021/jo00987a028
  24. Sipe, H. J.; Clary, D. W.; White, S. B. Synthesis 1984, 283.
  25. Ufda, M.; Uchiyama, K.; Kano, T. Synthesis 1984, 323.
  26. Olah, G. A.; Mathew, T.; Parakash, G. K. S. Chem. Commun. 2001, 1696.
  27. Mirjalali, M. B.; Zolfigol, M. A.; Bamoniri, A.; Khazdooz, L. Bull. Korean Chem. Soc. 2003, 24, 1009. https://doi.org/10.5012/bkcs.2003.24.7.1009
  28. Li, H.-Z.; Xiao, L.-W.; Li, H.-Y.; Wang, K.-F.; Li, X. J. J. Chem. Res. (S) 2003, 493.
  29. Hajipour, A. R.; Zarei, A.; Khazdooz, L.; Pourmousavi, S. A.; Mirjalili, B. B. F.; Ruoho, A. E. Phosphorus, Sulfur, and Silicon 2005, 180, 2029. https://doi.org/10.1080/104265090902796
  30. Alizadeh, A.; Khodaei, M. M.; Nazari, E. Tetrahedron Lett. 2007, 48, 6805. https://doi.org/10.1016/j.tetlet.2007.07.081
  31. Parvanak Boroujeni, K.; Massah, A. R. React. Funct. Polym. 2006, 66, 1126. https://doi.org/10.1016/j.reactfunctpolym.2006.02.002
  32. Dictionary of Organic Compounds, 6th ed.; Chapman and Hall: London, 1996.
  33. Beaulieu, C.; Guay, D.; Wanga, Z.; Evans, D. A. Tetrahedron Lett. 2004, 45, 3233. https://doi.org/10.1016/j.tetlet.2004.02.127
  34. Katritzky, A. R. J. Org. Chem. 1986, 51, 4914. https://doi.org/10.1021/jo00375a029
  35. Harvey, D. T. Modern Analytical Chemistry; McGraw-Hill:Dubuque, 2000
  36. Dorogova, V. B.; Zhurba, O. M.; Rozhanskaya, A. V. J. Anal. Chem. 2009, 64, 674. https://doi.org/10.1134/S106193480907003X

Cited by

  1. Iodine-Catalyzed Regioselective 2-Sulfonylation of Indoles with Sodium Sulfinates vol.16, pp.1, 2014, https://doi.org/10.1021/ol402987u
  2. 2 Sulfonylation of Indoles Mediated by Molecular Iodine vol.79, pp.4, 2014, https://doi.org/10.1021/jo402831k
  3. -Indole with Sodium Sulfinates vol.2017, pp.19, 2017, https://doi.org/10.1002/ejoc.201700269
  4. ChemInform Abstract: Polystyrene Supported Al(OTf)3: A Stable, Efficient, Selective, and Reusable Catalyst for Sulfonylation of Arenes with Sulfonic Acids. vol.41, pp.46, 2010, https://doi.org/10.1002/chin.201046077
  5. Polystyrene Supported Al(OTf)3: an Environmentally Friendly Heterogeneous Catalyst for Friedel-Crafts Acylation of Aromatic Compounds vol.31, pp.11, 2010, https://doi.org/10.5012/bkcs.2010.31.11.3156
  6. Direct Metal‐ and Reagent‐Free Sulfonylation of Phenols with Sodium Sulfinates by Electrosynthesis vol.25, pp.28, 2019, https://doi.org/10.1002/chem.201900850
  7. Straightforward Electrochemical Sulfonylation of Arenes and Aniline Derivatives using Sodium Sulfinates vol.6, pp.17, 2010, https://doi.org/10.1002/celc.201901212
  8. Selective Conversion of Benzylic Phosphates into Diarylmethanes Through Al(OTf)3 -Catalyzed Friedel-Crafts-Type Benzylation : Selective Conversion of Benzylic Phosphates into Diarylmethanes vol.2020, pp.15, 2010, https://doi.org/10.1002/ejoc.202000077