DOI QR코드

DOI QR Code

Synthesis, Crystal Structure, Spectra Characterization and DFT Studies on a Di-Cycle Pyrazoline Derivative

  • Song, Jie (Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University) ;
  • Zhao, Pu Su (Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University) ;
  • Zhang, Wei Guang (Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University)
  • Received : 2010.03.08
  • Accepted : 2010.04.20
  • Published : 2010.07.20

Abstract

A dicycle pyrazoline derivative, 1-phenyl-5-(p-fluorophenyl)-3,4-($\alpha$-p-fluoro-tolylenecyclohexano) pyrazoline, was synthesized and characterized by elemental analysis, IR, UV-vis, fluorescence spectra and X-ray single crystal diffraction. Density function theory (DFT) calculations were performed by using B3LYP method with 6-$311G^{**}$ basis set. The optimized geometry can well simulate the molecular structure. Vibrational frequencies were predicted, assigned and compared with the experimental values, which suggest that B3LYP/6-$311G^{**}$ method can well predict the IR spectra. Both the experimental electronic absorption spectra and the predicted ones by B3LYP/6-$311G^{**}$ method reveal three electron-transition bands, with the theoretical ones having some red shifts compared with the experimental data. Natural bond orbital analyses indicate that the absorption bands are mainly derived from the contribution of n $\rightarrow\pi^*$ and $\pi\rightarrow\pi^*$ transitions. Fluorescence spectra determination shows that the title compound can emit blue-light at about 478 nm. On the basis of vibrational analysis, the thermodynamic properties of title compound at different temperature have been calculated, revealing the correlations between $C^0_{p,m}$, $S^0_m$, $H^0_m$ and temperature.

Keywords

References

  1. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  2. Gruner, J.; Hamer, P. J.; Friend, R. H.; Huber, H. J.; Scherf, U.; Holmes, A. B. Adv. Mater. 1994, 6, 748. https://doi.org/10.1002/adma.19940061006
  3. Tasch, S.; Niko, S.; Leising, G.; Scherf, U. Appl. Phys. Lett. 1996, 68, 1090. https://doi.org/10.1063/1.115722
  4. Greenham, N. C.; Moratti, S. C.; Bradly, D. D. C.; Friend, R. H.; Holmes, A. B. Nature 1993, 365, 628. https://doi.org/10.1038/365628a0
  5. Salbeck, J.; Yu, N.; Bauer, J.; Weissortel, F.; Bestgen, H. Synth. Met. 1997, 91, 209. https://doi.org/10.1016/S0379-6779(98)80033-7
  6. Grice, A. W.; Tajbakhsh, A.; Burn, P. L.; Bradley, D. D. C. Adv. Mater. 1997, 9, 1174. https://doi.org/10.1002/adma.19970091511
  7. Gao, Z. Q.; Lee, C. S.; Bello, I.; Lee, S. T.; Chen, R. M.; Lu, T. Y. Appl. Phys. Lett. 1999, 74, 865. https://doi.org/10.1063/1.123392
  8. Rivett, D. E.; Rosevear, J.; Wilshire, J. F. K. Aust. J. Chem. 1983, 36, 1649. https://doi.org/10.1071/CH9831649
  9. Wagner, A.; Schellhammer, C. W.; Petersen, S. Angew. Chem. Int. Ed. Engl. 1966, 5, 699. https://doi.org/10.1002/anie.196606991
  10. Dorlars, H.; Schellhammer, C. W.; Schroeder, J. Angew. Chem. Int. Ed. Engl. 1975, 14, 665. https://doi.org/10.1002/anie.197506651
  11. Sano, T.; Fujii, T.; Nishio, Y.; Hamada, Y.; Shibata, K.; Kuroki, K. Jpn. J. Appl. Phys. 1995, 34, 3124. https://doi.org/10.1143/JJAP.34.3124
  12. Ji, S. J.; Shi, H. B. Dyes. Pigments 2006, 70, 246. https://doi.org/10.1016/j.dyepig.2005.03.007
  13. Yang, G. B.; Wu, Y.; Tian, W. J.; Zhou, X.; Ren, A. M. Curr. Appl. Phys. 2005, 5, 327. https://doi.org/10.1016/j.cap.2003.11.093
  14. Lu, Z. Y.; Jiang, Q.; Zhu, W. G.; Xie, M. G.; Hou, Y. B.; Chen, X. H.; Wang, Z. J.; Zou, D. C.; Tsutsui, T. Synthetic. Met. 2000, 111-112, 425. https://doi.org/10.1016/S0379-6779(99)00388-4
  15. Wang, M. L.; Zhang, J. X.; Liu, J. Z.; Xu, C. X.; Ju, H. X. J. Lumin. 2002, 99, 79. https://doi.org/10.1016/S0022-2313(01)00204-6
  16. Zhao, P. S.; Li, Y. F.; Guo, H. M.; Jian, F. F.; Wang, X. Bull. Koren. Chem. Soc. 2007, 28, 1539. https://doi.org/10.5012/bkcs.2007.28.9.1539
  17. Zhao, P. S.; Li, Y. F.; Guo, H. M.; Wang, X.; Jian, F. F. Polish J. Chem. 2007, 81, 1735.
  18. Jian, F. F.; Zhao, P. S.; Guo, H. M.; Li, Y. F. Spectrochim. Acta A 2008, 69, 647. https://doi.org/10.1016/j.saa.2007.05.016
  19. Zhao, P. S.; Wang, H. Y.; Li, R. Q.; Guo, H. M. Indian J. Chem. A 2008, 47, 986.
  20. Guo, H. M.; Zhang, J.; Zhao, P. S.; Jian, F. F. Polish J. Chem. 2009, 83, 263.
  21. Sheldrick, G. M. SHELXTL, v5 Reference Manual, Siemens Analytical X-Ray Systems, Madison: WI, 1997.
  22. Wilson, A. J. International Table for X-Ray Crystallography, Kluwer Academic, Dordrecht, The Netherlands: 1992; Vol. C: Tables 6.1.1.4 (pp 500-502) and 4.2.6.8 (pp 219-222)
  23. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/ja00299a024
  24. Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 49, 17.
  25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al- Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.
  26. Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997. https://doi.org/10.1103/PhysRevLett.52.997
  27. Petersilka, M.; Gossmann, U. J.; Gross, E. K. U. Phys. Rev. Lett. 1966, 76, 1212. https://doi.org/10.1103/PhysRevLett.76.1212
  28. Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Let. 1996, 256, 1996.
  29. Jamorski, C.; Casida, M. E.; Salahub, D. R. J. Chem. Phys. 1996, 104, 5134. https://doi.org/10.1063/1.471140
  30. Zhao, P. S.; Guo, H. M.; Wang, X.; Jian, F. F. J. Chin. Chem. Soc. 2008, 183, 55.
  31. Jian, F. F.; Zhao, P. S.; Yu, Q.; Wang, Q. X.; Jiao, K. J. Phys. Chem. A 2004, 108, 5258. https://doi.org/10.1021/jp037926o
  32. Frish, A.; Nielsen, A. B.; Holder, A. J. Gaussview Users Manual; Gaussian Inc.: Pittsburgh, 2003.
  33. Olsenand, L.; Jorgensen, P. In Modern Electronic Structure Theory; World Science: Vol. 2, River Edge, NJ, 1995.
  34. Fernando, M.; Claudio, O. A. Int. J. Quant. Chem. 2005, 103, 34. https://doi.org/10.1002/qua.20477

Cited by

  1. Synthesis and crystal structure of bis-chalcone-derived fused-ring pyrazoline having an unusual substitution pattern vol.148, pp.10, 2017, https://doi.org/10.1007/s00706-017-1995-8
  2. Synthesis, molecular and crystal structure analysis of 2-bromo-4-chloro-6-{[4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-hydrazonomethyl}-phenol by experimental methods and theoretical calculations vol.1022, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2012.05.002
  3. Anchoring of Silver Nanoparticles onto Functionalized Multiwall-carbon Nanotube and Evaluation of Antibacterial Effects vol.23, pp.6, 2015, https://doi.org/10.1080/1536383x.2013.868805
  4. Catalyst-free synthesis of (7E)-7-benzylidene-3,3a,4,5,6,7-hexahydro-2,3-diphenyl-2H-indazole derivatives in PEG-400 as a green and reusable solvent vol.40, pp.9, 2016, https://doi.org/10.3184/174751916x14709222930154