DOI QR코드

DOI QR Code

Microwave Assisted One-pot Synthesis of Novel α-Aminophosphonates and heir Biological Activity

  • 투고 : 2010.02.03
  • 심사 : 2010.03.12
  • 발행 : 2010.07.20

초록

A simple and efficient synthesis of various $\alpha$-aminophosphonates (3a-l) by the reaction of substituted aromatic/heterocyclic aldehydes, 2-amino-6-methoxy-benzothiazole and dibutyl/diphenyl phosphites under microwave irradiation without catalyst was accomplished. The phosphonates were characterized by elemental analysis, IR, $^1H$, $^{13}C$- and $^{31}PNMR$ spectra. They showed promising antimicrobial, anti-oxidant activities depending on the nature of bioactive groups at the $\alpha$-carbon.

키워드

참고문헌

  1. Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42, 8211. https://doi.org/10.1016/S0040-4039(01)01627-6
  2. Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.; Narisimhulu, C. Tetrahedron Lett. 2001, 42, 5561. https://doi.org/10.1016/S0040-4039(01)01053-X
  3. Kafarski, P.; Lejczak, B. Curr. Med.Chem. Anti-Cancer Agents 2001, 1, 301. https://doi.org/10.2174/1568011013354543
  4. De Lombaert, S.; Blanchard, L.; Tan, J.; Sakane, Y.; Berry, C.; Ghai, R. D. Bioorg. Med. Chem. Lett. 1995, 5, 145. https://doi.org/10.1016/0960-894X(94)00474-T
  5. Kukhar, V. P.; Hudson, H. R. Aminophosphonic and Aminophosphinic Acids-Chemistry and Biological Activity; John Wiley & Sons: Chichester, 2000.
  6. Kafarski, P.; Lejczak, B. Phosphorus, Sulfur, Silicon Relad. Elem. 1991, 63, 193. https://doi.org/10.1080/10426509108029443
  7. Atherton, F. R.; Hassall, C. H.; Lambert, R. W. J. Med. Chem. 1986, 29, 29. https://doi.org/10.1021/jm00151a005
  8. Sikorski, J. A.; Miller, M. J.; Braccolino, D. S.; Cleary, D. G.; Corey, S. D.; Font, J. L.; Gruys, K. J.; Han, C. Y.; Lin, K. C.; Pansegrau, P. D.; Ream, J. E.; Schnur, D.; Shah, A.; Walker, M. C. Phosphorus, Sulfur, Silicon Relad. Elem. 1993, 76, 115. https://doi.org/10.1080/10426509308032372
  9. Stowasser, B.; Budt, K. H.; Jain-Qi, L.; Peyman, A.; Ruppert, D. Tetrahedron Lett. 1992, 33, 6625. https://doi.org/10.1016/S0040-4039(00)61002-X
  10. Patel, D. V.; Reilly-Gauvin, K.; Ryono, D. E. Tetrahedron Lett. 1990, 31, 5587. https://doi.org/10.1016/S0040-4039(00)97903-6
  11. Bruke, T. R., Jr.; Brachi, J. J., Jr.; George, C.; Wolf, G.; Shoelson, S. E.; Yan, X. J. Med. Chem. 1995, 38, 1386. https://doi.org/10.1021/jm00008a017
  12. Bruke, T. R., Jr.; Kole, H. K.; Roller, P. P. Biochem. Biophys. Res. Commun. 1994, 204, 129. https://doi.org/10.1006/bbrc.1994.2435
  13. Peyman, A.; Budt, K. H.; Paning, J. S.; Stowasser, B.; Ruppert, D. Tetrahedron Lett. 1992, 33, 4549. https://doi.org/10.1016/S0040-4039(00)61309-6
  14. Atherton, F. R.; Hassall, C. H.; Lambert, R. W. J. Med. Chem. 1986, 29, 29. https://doi.org/10.1021/jm00151a005
  15. Kafarski, P.; Lejack, B.; Mastalerz, P. Beitr. Wirk. Forsh. 1985, H25
  16. Kafarski, P.; Lejack, B.; Mastalerz, P. Chem. Abstr. 1985, 103, 174532.
  17. Li, Z. G.; Huang, R. Q.; Shao, R. L.; Yang, Z.; Long, Y. X. Phosphorus, Sulfur, Silicon Relad. Elem. 1999, 155, 137. https://doi.org/10.1080/10426509908044977
  18. Hung, J.; Chen, R. Y. Heteroat. Chem. 2001, 12, 97. https://doi.org/10.1002/hc.6
  19. Li, Z. G.; Huang, R. Q.; Yang, Z. Chin. J. Appl. Chem. 1999, 16, 90. https://doi.org/10.1002/jctb.5010160305
  20. Kabachnik, M. M.; Minaeva, L. I.; Beletskaya, I. P. Synthesis 2009, 14, 2357
  21. Lee, S. G.; Lee, J. K.; Song, C. E.; Kim, D. C. Bull. Korean Chem. Soc. 2002, 23, 667. https://doi.org/10.5012/bkcs.2002.23.5.667
  22. Thomas, L. C. Interpretation of the Infrared Spectra of Organophosphorus Compounds; Hyden & Son Ltd.: London, 1974.
  23. Kiran, B.; Gunasekhar, D.; Reddy, C. D.; Reddy, C. S.; Tran, K.; Jhane, Le.; Berlin, K. D.; Srinivasan, K.; Devi, M. C. Pest Manage. Sci. 2005, 61, 1016. https://doi.org/10.1002/ps.1067
  24. Jin, L.; Song, B.; Zhang, G.; Xu, R.; Zhang, S.; Gao, X.; Hu, D.; Yang, S. Bioorganic. Med. Chem. Lett. 2006, 16, 1537. https://doi.org/10.1016/j.bmcl.2005.12.041
  25. Cochart, J. C.; Mc Donell, M. B.; Tyson, P. D. J. Chem. Soc., Perkin Trans. 1983, 1, 2153.
  26. Petersen, D.; Marcolini, M.; Bernadi, L.; Fini, F.; Herrera, P. R.; Sgarzani, V.; Ricci, A. J. Org. Chem. 2006, 71, 6296.
  27. Shahidi Bonjar, G. H. Asian. J. Plant Sci. 2004, 3, 56.
  28. Betteridge, D. J. What is Oxidative Stress, Metabolism. 2000, 49, 3.
  29. Shackelford, R. E.; Kaufmann, W. K,; Paules, R. S. Free Radic. Biol. Med. 2000, 28, 1387. https://doi.org/10.1016/S0891-5849(00)00224-0
  30. Armarego, W. L. F.; Perrin D. D. Purification of Laboratory Chemicals, 4th ed.; Butterworth: Heinemann, Oxford, 1997; OX2 8DP.
  31. Bauer, A .W.; Kirby, W. M. M.; Sherris , J. C.; Truck, M. Am. J. Clin. Pathol. 1966, 45, 493
  32. Cruickshank, R. Medical Microbiology, A Guide to Diagnosis and Control of Infection, 2nd ed.; E. S. Livingston Ltd.: Edinburgh and London, 1968.
  33. Mistuda, H.; Yuasumoto, K.; Iwami, K. Eiyo To Shokuryo. 1996, 19, 210

피인용 문헌

  1. ]thiazol-2-ylamino)methyl Phosphonates vol.24, pp.1, 2012, https://doi.org/10.1002/hc.21063
  2. Catalyst and Their Anticancer Activity vol.346, pp.9, 2013, https://doi.org/10.1002/ardp.201300214
  3. Aluminium nitride catalyzed solvent-free synthesis of some novel biologically active α-aminophosphonates vol.11, pp.3, 2014, https://doi.org/10.1007/s13738-013-0344-z
  4. TSA vol.25, pp.3, 2014, https://doi.org/10.1002/hc.21147
  5. A novel, rapid and green method of phosphorylation under ultrasound irradiation and catalyst free conditions vol.5, pp.57, 2015, https://doi.org/10.1039/C5RA06380A
  6. New Synthesis and Biological Evaluation of Benzothiazole Derivates as Antifungal Agents vol.63, pp.14, 2015, https://doi.org/10.1021/acs.jafc.5b00150
  7. The Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants: A Seedling Emergence and Growth Test vol.21, pp.6, 2016, https://doi.org/10.3390/molecules21060694
  8. -aminophosphonates containing 6-fluorobenzothiazole moiety vol.192, pp.9, 2017, https://doi.org/10.1080/10426507.2017.1323895
  9. Novel N-Arylaminophosphonates Bearing a Pyrrole Moiety and Their Ecotoxicological Properties vol.22, pp.7, 2017, https://doi.org/10.3390/molecules22071132
  10. A Highly Efficient Bismuth Salts-Catalyzed Route for the Synthesis of α-Aminophosphonates vol.15, pp.11, 2010, https://doi.org/10.3390/molecules15118205
  11. vol.193, pp.6, 2018, https://doi.org/10.1080/10426507.2018.1424163
  12. Copper(I)-Catalyzed Tandem One-Pot Synthesis of 2-Arylthiobenzothiazoles and 2-Arylthiobenzoxazoles in Water vol.83, pp.19, 2010, https://doi.org/10.1021/acs.joc.8b01644
  13. Tungstosulfonic acid-catalyzed green synthesis and bioassay of α-aminophosphonates vol.150, pp.6, 2019, https://doi.org/10.1007/s00706-019-2385-1
  14. Structural Activity Relationship and Importance of Benzothiazole Derivatives in Medicinal Chemistry: A Comprehensive Review vol.17, pp.3, 2010, https://doi.org/10.2174/1570193x16666190204111502
  15. Green Synthesis, Antioxidant, and Plant Growth Regulatory Activities of Novel α-Furfuryl-2-alkylaminophosphonates vol.6, pp.4, 2010, https://doi.org/10.1021/acsomega.0c05302
  16. Synthesis and Anti-Pancreatic Cancer Activity Studies of Novel 3-Amino-2-hydroxybenzofused 2-Phospha-γ-lactones vol.6, pp.17, 2021, https://doi.org/10.1021/acsomega.1c00360
  17. Recent Advances in the Synthesis of α‐Aminophosphonates: A Review vol.6, pp.24, 2010, https://doi.org/10.1002/slct.202101360
  18. Cross-coupling reaction of organoalane reagents with 2-mercaptobenzo-5-membered heterocycles for efficient synthesis of benzo-5-membered heterocycle sulfides vol.103, pp.None, 2010, https://doi.org/10.1016/j.tet.2021.132564