DOI QR코드

DOI QR Code

Sorption of aqueous uranium(VI) ion onto a cation-exchangeable K-birnessite colloid

양이온 교환능을 갖는 K-Birnessite 콜로이드에 의한 수용성 우라늄(VI) 이온의 흡착 연구

  • Kang, Kwang-Cheol (Green Home Energy Technology Research Center, Kongju National University) ;
  • Kim, Seung-Soo (Korea Atomic Energy Research institute) ;
  • Baik, Min-Hoon (Korea Atomic Energy Research institute) ;
  • Kwon, Soo-Han (Department of Chemistry, College of Natural Sciences, Chungbuk National University) ;
  • Rhee, Seog-Woo (Green Home Energy Technology Research Center, Kongju National University)
  • 강광철 (공주대학교 그린홈에너지기술연구소) ;
  • 김승수 (한국원자력연구원) ;
  • 백민훈 (한국원자력연구원) ;
  • 권수한 (충북대학교 화학과) ;
  • 이석우 (공주대학교 그린홈에너지기술연구소)
  • Received : 2010.08.12
  • Accepted : 2010.12.02
  • Published : 2010.12.25

Abstract

This paper describes the sorption behaviors of aqueous uranium ions on the K-birnessite. K-birnessite was synthesized by adding a concentrated HCl to an aqueous solution of $KMnO_4$. Physicochemical characteristics of the K-birnessite, such as structure, specific surface area and surface charge, were investigated. K-birnessite is a layered material and the $K^+$ ions exist in the interlayer of layered K-birnessite. BET specific surface area of the K-birnessite was 38.30 m2/g. The surface charge of K-birnessite was $-1.65\;C/m^2$ at pH 5.00 and ionic strength of 0.010 M $NaClO_4$, at which the sorption experiments of uranium ions were carried out. Uranium ions were incorporated into the interlayer of the K-birnessite by cation-exchange reaction with $K^+$ ions, and the distribution coefficient is quite similar to those of common ion-exchange materials. The results might be applicable in the retardation of migration of radioactive materials from the underground disposal site of high-level radioactive waste.

양이온 교환능력을 갖는 합성 K-birnessite를 이용하여 수용성 우라늄 이온($UO_2^{2+}$)에 대한 흡착 거동을 조사하였다. K-birnessite는 KMnO4 수용액과 염산을 반응시켜 합성하였으며, 합성된 K-birnessite의 구조, 비표면적 및 표면전하 등 물리화학적 특성을 규명하였다. $K^+$ 이온은 층상구조를 갖는 $MnO_2$ 층간에 존재하였으며, BET 비표면적은 $38.30\;m^2/g$이었다. 우라늄 흡착실험 조건인 pH 5.00, 이온세기 0.010M $NaClO_4$에서 측정된 K-birnessite의 표면전하는 $-1.65\;C/m^2$이었다. 우라늄 이온은 K-birnessite 층간의 $K^+$와 이온교환 반응을 통하여 흡착하였으며, 분배계수는 일반적인 이온교환물질과 유사하였다. 본 연구결과는 고준위 방사성 폐기물 지하처분장으로부터 유출될 수 있는 방사성물질의 이동을 저지하는 방법으로 활용될 수 있을 것이다.

Keywords

References

  1. 한필수 외, "고준위폐기물 처분기술 개발 : 지하 핵종 거동 규명 연구", KAERI/RR-2326/2002, pp. 74-98, 한국원자력연구소 (2002).
  2. J. H. Rees, J. Nucl. Mater., 130(3), 336-345(1985). https://doi.org/10.1016/0022-3115(85)90322-8
  3. R. Koester and G. Rudolph, Nucl. Technol., 96(2), 192-201(1991). https://doi.org/10.13182/NT91-A34605
  4. U. R. Berner, Waste Management, 12(2-3), 201-219(1992). https://doi.org/10.1016/0956-053X(92)90049-O
  5. W.-J. Cho, J.-O. Lee, P.-S. Hahn and K.-S. Chun, Nucl. Technol., 116(1), 115-126(1996). https://doi.org/10.13182/NT96-A35316
  6. S. K. Sahoo, Indian J. Phys., 83(6), 787-797(2009). https://doi.org/10.1007/s12648-009-0046-7
  7. S. Takeda, S. Shima, H. Kimura and H. Matuaurt, "The aqueous solubility and speciation analysis for uranium, neptunium and selenium by the geochemical code (EQ3/6)", JAERI-Research 95-069, 일본원자력연구소 (1995).
  8. M.-H. Baik, W.-J. Cho and P.-S. Hahn, J. Kor. Radioactive Waste Soc., 2(2), 135-143(2004).
  9. J.-H. Kim and W.-H. Lee, J. Kor. Inst. Met. & Mater., 34(7), 917-921(1996).
  10. S. S. Kim, K. C. Kang, J. S. Kim, E. C. Jung and M. H. Baik, Anal. Sci. Technol. 21(2), 143-147(2008).
  11. J.-T. Kim, Anal. Sci. Technol., 22(1), 92-100(2009).
  12. Q. Feng, H. Kanoh and K. Ooi, J. Mater. Chem., 9(2), 319-333(1999). https://doi.org/10.1039/a805369c
  13. S. Ching, D. J. Petrovay, M. L. Jorgensen and S. L. Suib, Inorg. Chem., 36(5), 883-890(1997). https://doi.org/10.1021/ic961088d
  14. S. Cheng, Catal. Today, 49(1-3), 303-312(1999). https://doi.org/10.1016/S0920-5861(98)00437-4
  15. M. Bode, C. Cachet, S. Bach, J.-P. Pereira-Ramos, J. C. Ginoux and L. T. Yu, J. Electrochem. Soc., 144(3), 792-801(1997). https://doi.org/10.1149/1.1837491
  16. G. V. Novikov, L. N. Kulikova, O. Yu. Bogdanova, G. I. Sychkova, O. M. Dara and I. G. Lugovskaya, Russ. J. Inorg. Chem., 54(2), 180-190(2009). https://doi.org/10.1134/S003602360902003X
  17. Q. Feng, K. Yanagisawa and N. Yamasaki, J. Mat. Sci. Lett., 16(2), 110-112(1997). https://doi.org/10.1023/A:1018577523676
  18. M.-H. Baik and P.-S. Hahn, J. Kor. Nucl. Soc., 33(3), 261-269(2001).
  19. A. Nasser, G. Sposito and M. A. Cheney, Colloids Surf. A: Physicochem. Eng. Aspects., 163(2-3), 117-123 (2000). https://doi.org/10.1016/S0927-7757(99)00297-6
  20. R. M. Mckenzie, Geochim. Cosmochim. Acta, 43(11), 1855-1857(1979). https://doi.org/10.1016/0016-7037(79)90034-6
  21. W.-F. Tan, S.-J. Lu, F. Liu, X.-H. Feng, J.-Z. He and L. K. Koopal, Soil Sci., 173(4), 277-286(2008). https://doi.org/10.1097/SS.0b013e31816d1f12
  22. C. L. Peacock and D. M. Sherman, Chem. Geol., 238(1), 94-106(2007). https://doi.org/10.1016/j.chemgeo.2006.10.019
  23. S. Mustafa, M. I. Zaman and S. Khan, J. Colloid Interf. Sci., 301(2), 370-375(2006). https://doi.org/10.1016/j.jcis.2006.05.020
  24. 박종훈, 충남대학교 석사학위논문. 2005.
  25. M.-H. Baik and W.-J. Cho, J. Kor. Radioactive Waste Soc., 4(3), 235-2432(2006).
  26. M.-S. Song, S.-M. Koh and W.-S. Kim, J. Miner. Soc. Kor., 18(3), 183-194(2005).
  27. G. D. Turner, J. M. Zachara, J. P. Mckinley and S. C. Smith, Geochim. Cosmochim. Acta, 60(18), 3399-3414 (1996). https://doi.org/10.1016/0016-7037(96)00169-X
  28. S. P. Hyun, Y. H. Cho, P. S. Hahn and S. J. Kim, J. Radioanal. Nucl. Chem., 250(1), 55-62(2001). https://doi.org/10.1023/A:1013212130177
  29. C. Henning, T. Reich, R. Dahn and A. M. Scheidegger, Radiochim. Acta, 90(9-11), 653-657(2002). https://doi.org/10.1524/ract.2002.90.9-11_2002.653
  30. C. J. Chisholm-Brause, J. M. Berg, K. M. Little, R. A. Matzner and D. E. Morris, J. Colloid Interf. Sci., 277(2), 366-382(2004). https://doi.org/10.1016/j.jcis.2004.04.047

Cited by

  1. Adsorption Characteristics of Al (III), Ni (II), Sm (III) Ions on Resin with Styrene Hazardous Material in Reinforcement Water Fire Extinguishing Agent vol.6, pp.3, 2013, https://doi.org/10.13160/ricns.2013.6.3.151
  2. Adsorption of Rare Earth Metal Ion on N-Phenylaza-15-Crown-5 Synthetic Resin with Styrene Hazardous Material vol.7, pp.2, 2014, https://doi.org/10.13160/ricns.2014.7.2.130
  3. Adsorption of Uranium (VI) Ion on 1-Aza-12-Crown-4 Synthetic Resin with Styrene Hazardous Material vol.6, pp.2, 2013, https://doi.org/10.13160/ricns.2013.6.2.104