DOI QR코드

DOI QR Code

Fe-ACF/TiO2 복합체의 특성화와 가시광선조건에서 MB 용액의 광촉매활성

Characterization of Fe-ACF/TiO2 composite and photocatalytic activity for MB Solution under visible light

  • 장간 (한서대학교, 신소재공학과) ;
  • 맹칙달 (한서대학교, 신소재공학과) ;
  • 오원춘 (한서대학교, 신소재공학과)
  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • 투고 : 2009.06.02
  • 심사 : 2010.04.21
  • 발행 : 2010.06.25

초록

본 연구에서 종래의 졸-겔법을 사용하여 Fe-ACF/$TiO_2$ 광촉매 복합체를 제조하였고, 이들 광촉매의 분해능은 메틸렌블루 (MB) 용액의 분해에 의하여 나타내었다. 제조된 이들 복합체에 대한 입자크기, 표면구조, 결정상 및 원소분석을 BET, SEM, XRD 및 EDX에 의하여 각각 특성화 하였다. 가시광선 조건에서 분해된 MB 농도에 대한 스펙트라는 UV/Vis 분광기에 의하여 얻어 졌다. 이와 같이 얻어진 스펙트라는 MB의 제거된 농도로부터 광촉매 활성을 입증하였다. 이들 광촉매 활성은 가시광선 조건에서 복합체 광촉매 내에 존재하는 ACF, $TiO_2$ 및 Fe 사이에 강력한 시너지 반응에 의해 유도된 것으로 여겨진다.

In present study, a conventional sol-gel method was used to prepare Fe-ACF/$TiO_2$ composites, a kind of composite photocatalysts, whose capability was evaluated by degrading methylene blue (MB) solution. The particle size, surface structure, crystal phase and elemental identification of the composites prepared were characterized by BET, SEM, XRD and EDX, respectively. The spectra of MB concentration degraded under visible light were obtained by UV/Vis spectrophotometer. These obtained spectra demonstrated the photocaltalytic activity from removal concentrations of MB. It was considered that these photonic activities are induced by a strong synergetic reaction among ACF, $TiO_2$ and Fe in the composite photocatalysts under visible light.

키워드

참고문헌

  1. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev, 95, 69-96(1995). https://doi.org/10.1021/cr00033a004
  2. A. L. Linsebigler, G. Q. Lu and J. T. Yates Jr, Chem. Rev, 95, 735-758(1995). https://doi.org/10.1021/cr00035a013
  3. N. Negishi, T. Iyoda, K. Hashimoto and A. Fujishima, Chem. Lett, 24, 841-843(1995). https://doi.org/10.1246/cl.1995.841
  4. I. Sopyan, M. Watanabe and S. Murasawa, Chem. Lett, 1, 69-71(1996).
  5. T. Torimoto, S. Ito, S. Kuwabata and H. Yoneyama, Environ. Sci. Technol, 30, 1275-1281(1996). https://doi.org/10.1021/es950483k
  6. A. Mills and S. L. Hunte, J. Photochem. Photobiol. A : Chem, 108, 1-35(1997). https://doi.org/10.1016/S1010-6030(97)00118-4
  7. A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev, 1, 1-35(2000). https://doi.org/10.1016/S1389-5567(00)00002-2
  8. J. Matos, J. Laine and J. M. Herrman, Appl. Catal. B: Environ, 18, 281-291(1998). https://doi.org/10.1016/S0926-3373(98)00051-4
  9. S. X. Liu, Z. P. Qu, X. W. Han and C. L. Sun, Catal. Today, 93, 877-884(2004). https://doi.org/10.1016/j.cattod.2004.06.097
  10. T. Sauer, G. C. Neto, H. J. Jose and R. F. P. M. Moreira, J. Photochem. Photobiol. A: Chem, 149, 147-154(2002). https://doi.org/10.1016/S1010-6030(02)00015-1
  11. C. Galindo, P. Jacques and A. Kalt, J. Photochem. Photobiol. A: Chem, 141, 47-56(2001). https://doi.org/10.1016/S1010-6030(01)00435-X
  12. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti and N. Serpone, Appl. Catal. B: Environ, 15, 147-156(1998). https://doi.org/10.1016/S0926-3373(97)00043-X
  13. M. A. Hasnat, I. A. Siddiquey and A. Nuruddin, Dyes Pigments, 66, 185-188(2005). https://doi.org/10.1016/j.dyepig.2004.09.020
  14. R.W. Matthews, J. Phys. Chem, 91, 3328-3333(1987). https://doi.org/10.1021/j100296a044
  15. W. Zhao, C. C. Chen, X. Z. Li and J. C. Zhao, J. Phys. Chem. B., 106, 5022-5028(2002). https://doi.org/10.1021/jp020205p
  16. W. D. Wang, P. Serp, P. Kalck and J. Luiys Faria, J. Molecular Catal A: Chem., 235, 194-199(2005). https://doi.org/10.1016/j.molcata.2005.02.027
  17. W. Choi, A. Termin and M. Hoffmann, J. Phys. Chem, 98, 13669-13679(1994). https://doi.org/10.1021/j100102a038
  18. W. Shockley and W. T. Read, J. Phys. Rev, 87, 835-842(1952). https://doi.org/10.1103/PhysRev.87.835
  19. A. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Sci, 293, 269-271(2001). https://doi.org/10.1126/science.1061051
  20. Y. B. Xie and C. W. Yuan, Appl. Catal. B: Environ, 46, 251-259(2003). https://doi.org/10.1016/S0926-3373(03)00211-X
  21. Y. B. Xie and C. W. Yuan, Appl. Surf. Sci, 221, 17-24 (2004). https://doi.org/10.1016/S0169-4332(03)00945-0
  22. L. C. Chena, Y. C. Hoa, W. S. Guo, C. M. Huang and T. C. Pan. Electrochimica. Acta, 54, 3884-3891(2009). https://doi.org/10.1016/j.electacta.2009.02.001
  23. B. Pal, M. Sharon and G. Nogami, Mater. Chem. Phy, 59, 254-261(1999). https://doi.org/10.1016/S0254-0584(99)00071-1
  24. Z. M. Wang, G. Yang, P. Biswas, W. Bresser and P. Boolchand, Powder. Technol, 114, 197-204(2001). https://doi.org/10.1016/S0032-5910(00)00321-1
  25. W. C. Oh and M. L. Chen, J. Ceram. Process. Res, 9, 100-106(2008).
  26. M. L. Chen, S. Lim and W. C. Oh, Carbon. lett, 8, 177-183 (2007). https://doi.org/10.5714/CL.2007.8.3.177
  27. Y. G. Go, F. J. Zhang, M. L. Chen and W. C. Oh, J. Mater. Res, 19, 142-150(2009).
  28. I. Konstantinou and T. Albanis, Appl. Catal. B. Environ, 42, 319-335(2003). https://doi.org/10.1016/S0926-3373(02)00266-7
  29. M. Inagaki, Y. Hirose, T. Matsunage, T. Tsumura and M. Toyoda, Carbon, 41, 2619-2642(2003). https://doi.org/10.1016/S0008-6223(03)00340-3
  30. M. L. Chen, J. S. Bae and W. C. Oh, Analytical. Sci. Technol, 19, 460-467(2006).
  31. B. Tryba, A. W. Morawski and M. Inagaki, Appl. Catal. B: Environ, 46, 203-208(2003). https://doi.org/10.1016/S0926-3373(03)00214-5
  32. K. Nagaveni, M. S. Hedge and G. Madras, J. Phys. Chem. B, 108, 20204-20212(2004). https://doi.org/10.1021/jp047917v

피인용 문헌

  1. Deposition of nanocomposite Cu–TiO2 using heterogeneous colliding plasmas vol.124, pp.3, 2018, https://doi.org/10.1007/s00340-018-6919-8