DOI QR코드

DOI QR Code

A glucose biosensor based on deposition of glucose oxidase onto Au nanoparticles poly(maleic anhydride)-grafted multiwalled carbon nanotube electrode

금 나노입자/폴리(maleic anhydride) 그래프트 탄소나노튜브에 글루코스 옥시다아제 담지를 기반으로 한 글루코스 바이오센서

  • Received : 2010.01.25
  • Accepted : 2010.02.11
  • Published : 2010.04.25

Abstract

Glucose oxidase ($GOD_{ox}$) immobilized biosensor was fabricated by two methods. In one of the methods, gold nanoparticles (Au-NPs) prepared by ${\gamma}$-irradiation were loaded into the poly(maleic anhydride)-grafted multi-walled carbon nanotube, PMAn-g-MWCNT electrode via physical entrapment. In the other method, the Au-NPs were prepared by electrochemical reduction of Au ions on the surface of PMAn-g-MWCNT electrode and then GODox was immobilized into the Au-NPs. The $GOD_{ox}$ immobilized biosensors were tested for electrocatalytic activities to sense glucose. The sensing range of the biosensor based on the Au-NPs physically modified PMAn-g-MWCNT electrode was from $30\;{\mu}M$ to $100\;{\mu}M$ for the glucose concentration, and the detection limit was $15\;{\mu}M$. Interferences of ascorbic acid and uric acid were below 7.6%. The physically Au deposited PMAn-g-MWCNT paste electrodes appear to be good sensor in detecting glucose.

글루코스 옥시다아(GOx)제 고정화 바이오센서를 두 가지 방법으로 제조 하였다. 첫 번째 방법은 폴리(maleic anhydride) 그래프트 탄소나노튜브(PMAn-g-MWCNT) 전극에 감마선 조사법으로 제조 된 Au 나노입자를 물리적으로 흡착시킨 후, GOx을 고정화 시켜 바이오센서를 제조한 경우이고, 다른 하나는 PMAn-g-MWCNT 전극에서 Au 이온을 전기화학적으로 환원시켜 Au 나노입자를 코팅 시키고, 그 위에 GOx을 고정화 시켜 바이오센서를 제조 한 경우이두. 제조된 바이오센서에 대해 효율 평가를 수행 하였는데, 물리적 흡착법으로 제조된 전극의 경우 검출 범위는 $30\;{\mu}M\sim100\;{\mu}M$이었으며, 검출한계는 $15\;{\mu}M$이었다. 또한 ascorbic acid와 uric acid에 대한 검출한계는 7.6%이었다. 물리적으로 Au 나노입자가 흡착된 전극의 경우가 글루코스 측정에 매우 우수한 전극임을 확인 하였다.

Keywords

References

  1. Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M.M.F. Choi, Analyst, 133, 126-132(2008). https://doi.org/10.1039/b712970j
  2. F. Kurniawan, V. Tsakova, and V.M. Mirsky, Electroanalysis, 18, 1937-1942(2006). https://doi.org/10.1002/elan.200603607
  3. L. Q. Rong, C. Yang, Q. Y. Qian, and X. H. Xia, Talanta, 72, 819-824(2007). https://doi.org/10.1016/j.talanta.2006.12.037
  4. J. S. Ye, Y. Wen, W. D. Zhang, L. M. Gan, G. Q. Xu, and F. S. Sheu, Electrochem. Comm., 6, 66-70(2004). https://doi.org/10.1016/j.elecom.2003.10.013
  5. C. K. Tan, K. P. Loh, and T. T. L. John, Analyst, 133, 448-451(2008). https://doi.org/10.1039/b719914g
  6. S. Chakraborty and C. R. Raj, J. Electroanal. Chem., 609, 155-162(2007). https://doi.org/10.1016/j.jelechem.2007.06.024
  7. K. B. Male, S. Hrapovic, and J. H. T. Luong, Analyst, 132, 1254-1261(2007). https://doi.org/10.1039/b712478c
  8. A. Arvinte, A. M. Sesay, V. Virtanen, and C. Bala, Electroanalysis, 20, 2355-2362(2008). https://doi.org/10.1002/elan.200804332
  9. Y. Liu, M. K. Wang, F. Zhao, Z. A. Xu, and S. J. Dong, S. J. Biosens. Bioelectron. 21, 984-988(2005). https://doi.org/10.1016/j.bios.2005.03.003
  10. K. Yamamoto, G. Y. Shi, T. S. Zhou, F. Xu, J. M. Xu, T. Kato, J. Y. Jin, and L.T. Jin, Analyst, 128, 249-254(2003). https://doi.org/10.1039/b209698f
  11. W. J. Guan, Y. Li, Y. Q. Chen, X. B. Zhang, and G. Q. Hu, Biosens. Bioelectron. 21, 508-512(2005). https://doi.org/10.1016/j.bios.2004.10.030
  12. F. Patolsky, Y. Weizmann, and I Willner, Angew. Chem. Int. Ed. 43, 2113-2117(2004). https://doi.org/10.1002/anie.200353275
  13. Y. J. Zhang, Y. F. Shen, J. H. Li, L. Niu, S. J. Dong, and A. Ivaska, Langmuir, 21, 4797-4800(2005). https://doi.org/10.1021/la050026+
  14. M. Malmsten and A. Larsson, Colloid. Surf. B. Biointer. 18, 277-284(2000). https://doi.org/10.1016/S0927-7765(99)00153-8
  15. S. H. Choi and Y. C. Nho, Radiat. Phys. Chem., 58, 157-168(2000). https://doi.org/10.1016/S0969-806X(99)00367-9
  16. S. H. Choi, K. P. Lee and H. D. Kang, J. Appl. Polym. Sci., 88, 1153-1161(2003). https://doi.org/10.1002/app.11737
  17. C. Gouveria-Caridade, R. Pauliukaite, and C. M. A. Brett, Electrochim. Acta, 53, 6732-6739(2008). https://doi.org/10.1016/j.electacta.2008.01.040
  18. J. Wang, M. Musameh and Y. H. Lin, J. Am. Chem. Soc., 125, 2408-2409(2003). https://doi.org/10.1021/ja028951v
  19. H. Y. Gu, A.M. Yu, and H. Y. Chen, J. Electroanal. Chem., 516, 119-126(2001). https://doi.org/10.1016/S0022-0728(01)00669-6
  20. H. Feng, H. Wang, Y. Zhang, B. N. Yan, G. L. Shen, and R.Q. Yu, Anal. Sci., 23, 235-239(2007). https://doi.org/10.2116/analsci.23.235
  21. K. P. Lee, A. Gopalan, A. P. Santhosh, K. M Manesh, J. H. Kim, and K. S. Kim, J. Nanosci. Nanotechnol., 6, 1575-1583(2006). https://doi.org/10.1166/jnn.2006.212
  22. Z. J. Wang, M. Li, P. P. Su, Y. Zhang, Y. F. Shen, D. X. Han, A. Ivaska, and L. Niu, Electrochem. Commun., 10, 306-310(2008). https://doi.org/10.1016/j.elecom.2007.12.011
  23. L. T. Qu, L. Dai, and F. Osawa, J. Am. Chem. Soc., 128, 5523-5532(2006). https://doi.org/10.1021/ja060296u
  24. J. B. Jia, B. Q. Wang, A. G. Wu, G. J. Cheng, Z. Li and S. J. Dong, Anal. Chem., 74, 2217-2223(2002). https://doi.org/10.1021/ac011116w
  25. T. H. Li, H. G. Park and S. H. Choi, Mater. Chem. Phys., 105, 325-330(2007). https://doi.org/10.1016/j.matchemphys.2007.04.069
  26. B. V. Enustun and J. Turkevich, J. Am. Chem. Soc., 85, 3317-3328(1963). https://doi.org/10.1021/ja00904a001
  27. N. Li, R.Yuan, Y. Q. Chai, S. H. Chen, H. Z. An, and W. J. Li, J. Phys. Chem. C, 111, 8443-8450(2007). https://doi.org/10.1021/jp068610u
  28. M. H. Piao, D. S. Yang, K. R. Yoon, S. H. Lee and S. H. Choi, Sensors, 9, 1662-1667(2009). https://doi.org/10.3390/s90301662
  29. H. J. Kim, S. H. Choi, S. H. Oh, J. C. Woo, and I. K. Kim, J. Nanosci. Nanotechnol., 8, 1-6(2008). https://doi.org/10.1166/jnn.2008.N03

Cited by

  1. Polymer-copper-modified MWNTs by radiation-induced graft polymerization and their efficient adsorption of odorous gases vol.126, pp.S2, 2012, https://doi.org/10.1002/app.35453
  2. Immobilization of Enzymes via Microcontact Printing and Thiol–Ene Click Chemistry vol.26, pp.6, 2015, https://doi.org/10.1021/acs.bioconjchem.5b00282