DOI QR코드

DOI QR Code

Development of Electro-Biosensor for the Residual Pesticides using Organic Carbon and Cobalt Phthalocyanine

Cobalt Phthalocyanine 탄소유기 전극을 이용한 농약 잔류량 측정 센서개발

  • Yu, Young-Hun (Department of Physics, Cheju Ntional University) ;
  • Cho, Hyung-Jun (Department of Physics, Cheju Ntional University) ;
  • Park, Won-Pyo (School of Bioscience and Industry, Cheju National University) ;
  • Hyun, Hae-Nam (School of Bioscience and Industry, Cheju National University)
  • Received : 2010.01.04
  • Accepted : 2010.03.22
  • Published : 2010.03.31

Abstract

We have developed the bio-electrode measuring the variance of the amount of acetylcholine affected by residual pesticide. The working electrode of the biosensor was made by combination of cobalt phthalocyanine and carbon organic compounds. The biosensors were constructed by screen-printing method. The principle of working electrode is similar to thiocholine sensor. We have fabricated the biosensor using standard screen printing method. Generally, the biosensor made by printing method formed thick film biosensor. When the electrodes were made by electrochemical cells, the generation of current by the addition of enzyme substrate was inhibited by standard solutions of organo-phosphate pesticides. The detection limit of sensor is about 0.5 $\mu{g}/L$ for carbofuran. We could improve the responsibility of the sensor by controlling the cobalt phthalocyanine and thiocholine concentration ratio. Also we have tested the EPN and Chlorpyrifos pesticides and found that the biosensor is applicable to fast determination of residual pesticides.

본 연구에서는 탄소 유기물과 CoPh를 혼합하여 농약 잔류량을 측정 할 수 있는 바이오센서를 구현 하였다. 작동 전극은 탄소유기물과 CoPh를 섞어 사용하였고 비율은 CoPh를 7%로 제작하였다. CoPh가 7%인 경우 저농도 thiocholine 농도에서도 민감하게 반응하였다. 대표적인 농약인 카보후란에 대하여 센서의 감도 한계는 약$0.5{\mu}g/L$ 수준이며, 농약 농도에 따른 전극의 출력이 선형적인 결과를 얻었다. 또한 EPN 및 클로로피리포스 농약에 대하여 실험 한 결과 카보후란과 같이 농도에 따라 효과적으로 반응하는 것을 확인하였다. 이러한 센서는 현재 농약 잔류량 측정에 사용되는 비색법과 비교하여도 감도 및 선형성 면에서 뒤떨어지지 않으며, 간이 농약 잔류량 측정기 센서로 사용가능성이 있다.

Keywords

References

  1. Bruno, J.P., Sarter, M., Gash, C., and Parikh, V. (2006) Choline and acetylecholine-sensitive microelectrode, Encyclopedia of Sensor. 10, 1-15.
  2. Cho, H., Yu, Y., and Hyun, H. (2005) Development of Biosensor reader system for the Residual Pest-icides using White light Sourece and Color-sensor, Hankook Kwanghak Hoeji. 8(16), 433-438.
  3. Ciucu, A. (2001) Organic phase amperometric biosensor for detection of pesticides, Roum. Biotechnol. Lett. 7(2), 667-676.
  4. Cui, G., Yoo, J., Lee, S., Nam, H., and Cha, G. (2000) Differential thick-film amperometric glucose sensor with an enzyme-immobilized nitrocellucose mem-brane, Electroanalysis. 13(3), 224-228. https://doi.org/10.1002/1521-4109(200103)13:3<224::AID-ELAN224>3.0.CO;2-N
  5. Mitchell, K.M. (2004) Acetylecholine and choline amperometric enzyme sensor characterized in vitro and in vivo, Anal. Chemistry. 76(4), 1098-1106. https://doi.org/10.1021/ac034757v
  6. Parikh, V., Pomerleau, F., Huetti, P., Gerhardt, G.A., Sarter M., and Burno, J.P. (2004) Rapid assessment of in vivo cholinergic transmission by amperometric detection of change in extracellular choline levels, European J. Neuroscience. 20, 1545-1554. https://doi.org/10.1111/j.1460-9568.2004.03614.x
  7. Reshetilov, A.N. (2005) Biosensors 2004: The eighth world congress on biosensors, Appl. Biochem. Mi-crobiology. 41(2), 219-223. https://doi.org/10.1007/s10438-005-0038-0
  8. Rich, Rebecca L., and Myszka, David G. (2005), Survey of the year 2003 commercial optical biosensor literature, J. Mol. Recognit. 18, 1-39. https://doi.org/10.1002/jmr.726
  9. Savran, C.A., Burg, T.P., Fritz, J., and Manalis, S.R. (2003) Microfabricated mechanical biosensor with inherently differential readout, Appl. Phys. Lett. 83(8), 1659-1661. https://doi.org/10.1063/1.1605238
  10. Spence, M.M., Rubin, S.M., Dimitrov, I.E., Janette Ruiz, E., Wemmer, D.E., Pines, A., Yaoi, S.Q., Tiani, F., and Schultzi, P.G. (2003) Functionalized xenon as a biosensor, PNAS. 98(19), 10654-10657. https://doi.org/10.1073/pnas.191368398