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Abstract

Many tree algorithms have been developed for regression problems. Although they are regarded as good
algorithms, most of them suffer from loss of prediction accuracy when there are many noise variables. To
handle this problem, we propose the multi-step GUIDE, which is a regression tree algorithm with a variable
selection process. The multi-step GUIDE performs better than some of the well-known algorithms such
as Random Forest and MARS. The results based on simulation study shows that the multi-step GUIDE
outperforms other algorithms in terms of variable selection and prediction accuracy. It generally selects
the important variables correctly with relatively few noise variables and eventually gives good prediction
accuracy.
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1. Introduction

The aim of regression analysis is to discover the relationships between the response variable and
the predictor variables, and eventually to use the relationships to make predictions based on the
information. After a tentative model is fitted, we can assess how well the model fits and modify it
to improve the prediction. In this process, it is very important to decide which variables are to be
included or removed in the model. If there are many noise variables, the variable selection procedure
may play a much more important role in the prediction. Doksum et al. (2006) also pointed out this
problem. We consider a multi-step regression tree algorithm to solve it.

The regression tree is built through a process known as binary recursive partitioning. This is
an iterative process of splitting the data into partitions, and then splitting it further on each of
the branches. Figure 1.1 shows an example of a regression tree, where the root node contains all
the training observations, and the training data are recursively partitioned by values of the input
variables until reaching the terminal nodes (¢4, t5, ts, ts and ts) where the predictions are made.

GUIDE (Generalized, Unbiased, Interaction Detection and Estimation (Loh, 2002}) is a flexible
regression tree method. The algorithm has little variable selection bias, and it can detect local
interactions. Another algorithm is Random Forest (Breiman, 2001), which is a collection of tree
predictors such that each tree depends on the values of a bootstrap sample. It has been observed
that Random Forest can outperform bagging, and its performance is comparable to that of boosting
(Svetnik et al., 2003).
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Figure 1.1. Example of a regression tree: At each intermediate node, a case goes to the left child node if and only if the condition
is satisfied.

Although they are regarded as good regression tree algorithms, they both suffer from loss of pre-
diction accuracy when there are many noise variables, which is shown by a simulation study. We
consider the simulation model,

vi=pu(Xy)+e, i=1,...,n
with a mean function,
;L(Xz) = 10sin(1rzi1x¢2) —+ 20(1‘1‘3 — 05)2 + 10x;4 + 5z;i5 (11)

due to Friedman (1991), where X; is a d-dimensional vector of predictors (i.e. X; = (@1, iz, ..,
#:4)) whose component variables z;1,zi2, . . . , T:q are i.i.d from U(0, 1) with ¢; ~ N(0,0.1%). Conse-
quently, there are only five important variables in the model {x;1, zi2, ... ,Zi5), and the remainders
(zs6,%i7, - - -, Tiq) are noise variables. We generate 1,000 X;’s for a learning sample and 5,000 X.’s
for a testing sample, which means n = 6000 in this case. We use the estimated MSE to measure
the prediction accuracy in the simulation study, defined by

¥ (XY - p(Xim))?

MSE = 2 , 1.2
Ntest ( )

where X* denotes the testing sample, Ni.s: denotes the number of observations in the testing
sample, and (X;"*) denotes the predicted value of y;. We use the average MSE based on 100
simulation replicates. Figure 1.2 shows the problem as the number of noise variables increases. The
average MSE increases as more noise variables are added to the model.

We propose the multi-step GUIDE to solve this problem. Our algorithm is composed of two parts:
a variable selection procedure; and an actual fitting procedure with a reduced number of vari-
ables. Regardless of the number of noise variables, the algorithm shows good and stable prediction
performance overall.
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Figure 1.2. Performance of algorithms as noise variables increase for the simulation model (1.1)

This paper is organized as follows. In Section 2 we describe the features of algorithms such as two-
step GUIDE, multi-step GUIDE, and Random Forest in the presence of noise variables, followed

by the simulation study and real data analysis. In Section 3, we propose some possible future work
based on the results.

2. Robustifying Regression Trees in the Presence of Noise Variables
2.1. Review of the GUIDE algorithm

Loh (2002) proposed the GUIDE algorithm, which has negligible selection bias and relatively low
computational cost. GUIDE is also known as a smart data mining tool with flexible model fitting

methods at each node. The procedure for fitting a stepwise linear regression model in GUIDE is as
follows:

1. Let t denote the current node. Use stepwise regression which allows addition and deletion of
variables. The default values of F-to-enter and F-to-remove are 4.00 and 3.99, respectively.

2. Do not split a node if the R? of the fitted model is greater than 0.99 or the current node has
less than 2no observations, where no is a previously specified number.

3. For each observation, define the class variable Z by the sign of its residual for each observation.
That is, Define Z = 1 if the observation is associated with a positive residual. Otherwise, define
Z=0.

4. Construct a 2 X m cross-classification table for each predictor variable X. The rows of the table
are the values of Z, while the columns of the table are 4 intervals at the sample quartiles if X
is a numerical variable(m = 4). If X is a categorical variable, its m distinct values form the
columns of the table. Compute a p-value for the chi-squared test for each X based on the table.



360 Youngjae Chang

5. In addition to the above “curvature” tests, perform chi-squared tests to detect interactions
between pairs of same type variables (i.e., numerical variable pairs, categorical variable pairs) or
between pairs of different types of predictors. If a pair of variables from these interaction tests
gives the smallest p-value, the split variable is one of two variables depending on the composition
of the pairs.

6. Select the split variable X from the previous steps. Let t; and tr denote the left and right
subnodes of t.

¢ If X is a numerical variable, search for the split point which gives the lowest total of the sums
of squared residuals in ¢ and tg, provided that the number of observations at each node is
at least no or user-specified value.

o If X is a categorical variable, search for the split of the form X € C, which gives the lowest
weighted sum of the variances of Z in ¢ and tg, provided that the number of observations
at each node is at least ng. Here C is a subset of the values taken by X, and weights are
proportional to sample sizes.

7. After splitting has stopped, prune the tree with a test sample or by cross-validation.

There are several models we can fit at each node of the regression tree other than stepwise linear
option described above. For example, we can fit “constant”, “simple linear” or “multiple linear”
model at each node. Generally, the constant regression tree is a little larger than others in terms
of the number of terminal nodes.

2.2. Proposed algorithms

2.2.1. Two-step GUIDE We focus on the fact that only some variables are selected for the split
variables in GUIDE, which can be regarded as important ones. This is the motivation of using
GUIDE as a variable selection tool. So, we can think about a simple two-step GUIDE algorithm,
which is summarized as follows.

1. Follow the steps in GUIDE described in the previous section to grow a tree and prune it back.

2. Extract variable usage information from the tree. Note that variables which appear at the upper
nodes of a tree for splitting or fitting could be regarded as more important variables. Variables
not used for splitting or fitting are removed. We call this the screening step or first step.

3. The learning sample with the remaining variables is used to grow a new tree. We use GUIDE
once again for this purpose. We call this the fitting step or second step.

2.2.2. Multi-step GUIDE We also consider multi-step screening instead of only two steps. We
could see that stepwise GUIDE as a screening step tends to select more variables than needed in
the simulation study (Table 2.3). This brings an idea of multi-step screening with stepwise GUIDE
until the variable selection result gets stable. In other words, we do GUIDE stepwise screening step
repeatedly until the variable selection result remains unchanged. And we fit a model with a reduced
number of variables.

2.3. Random forest

Breiman (2001) proposed Random Forest which is an accurate algorithm having the unusual ability
to handle many variables without deletion or deterioration of accuracy. Its prediction accuracy is
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known to be fairly good. We present the basic steps of Random Forest in the regression case.

1. Learning sample is a bootstrap sample from the original learning sample.

2. A split variable is chosen among mtry variables which are randomly selected at each node. The
value of miry is a pre-specified integer. For a split, the Gini impurity criterion is used.

3. After a test vector X is put down each tree, the predicted value from this single tree is the mean
of the dependent variables of the learning sample at the node it reaches.

4. The average of these mean values of the dependent variables over all trees in the forest is the
predicted value for X.

2.4. Simulation and real data analysis

We use three simulation models and ten real datasets for the comparison of the algorithms. We com-
pare various algorithms in terms of prediction accuracy. Variable selection results by the regression
tree methods are also presented.

2.4.1. Simulation models and results Following Friedman (1991), we do simulation experiments
as follows.

As described before, the simulation model is,
yi=puXi)+e, t=1,...,n,

where X; is a d-dimensional vector of predictors (i.e. X; = (2:1,®i2,. .., %ia)) of which component
Ti1,Ti2, . . ., Tiq are generated in the form of U(0,1) and ¢; ~ N(0,0.1%). In addition to (1.1), the
following mean functions are used.

4

_ 4z
w(Xi) = 0.1 + 1T o 20Ga 09

+ 3xi3 + 2754 + Ti5 (2.1)
and

(2.2)

ZTil + Ti2 + iz + Tig + x5, M za + 202 <1,
w(Xi) = .
5, otherwise.

There are 1000 points for learning sample (i.e. ¢ =1,...,1000) and 5000 points for testing sample
(i.e. 1 = 1001,...,6000) out of n = 6000 observations. Estimated MSE in the form of (1.2) is/lged
to measure the prediction performance of these algorithms. We take the average of the 100 MSE’s
for each d (10 MSE’s for bagging), where d ranges from 5 (no noise variable) to 90.

GUIDE stepwise(Gs), GUIDE bagging(stepwise}(BG), two-step GUIDE(stepwise-stepwise; Gss,
constant-stepwise; Ges), multi-step GUIDE(multi-stepwise; Gs..s), Random Forest(RF) and Multi-
variate Adaptive Regression Splines(MARS) algorithms are compared. MARS is a nonparametric
regression procedure proposed by Friedman (1991), which constructs the relationship between the
dependent and independent variables from a set of coefficients and basis functions driven from the
regression data. We also consider the GUIDE multiple linear with pure dataset(Gm’) which does
not have any noise variable for comparison purpose. So, if any method’s result stands in line with
the result of Gm’ method, it could be regarded as very good one.

The simulation result is summarized in Table 2.1. Overall, the two-step and multi-step methods
perform very well showing relatively close results to that of Gm’ which is the GUIDE multiple linear
model with a pure dataset without any noise variables.
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Table 2.1. Average MSE's by algorithms for simulation models (standard error)

Models g?:;:;i:sf Gs BG Gces Gss Gs..s MARS Gm’
d=5 0.2283 0.0876 0.3790 0.2283 0.2452 1.884 0.2480
(0.003)  (0.006)  (0.004)  (0.003)  (0.009)  (0.006)  (0.008)
d=130 0.9378 0.5022 0.4307 0.3902 0.3484 1.995 0.2360
L.1) (0.04) (0.03) (0.03) (0.02) (0.01)  (0.007)  (0.006)
d =60 3.603 1.209 0.6538 0.4350 0.3186 2.132 0.2426
(0.07) (0.05) (0.07) (0.02) (0.01) (0.01)  (0.009)
d=090 4.068 1.569 0.7484 0.3268 0.2851 2.283 40.2419
(0.02) (0.07) (0.08) (0.01)  (0.005)  (0.01) (0.01)
d=5 0.0089 0.005 0.0161 0.0089 0.0086 0.0137 0.009
(0.0004)  (0.0004) (0.0002) (0.0004) (0.0002)  (0.0005)  (0.0002)
d=130 0.0353 0.0155 0.0420 0.0148 0.0125 0.0132 0.0089
1) (0.002)  (0.0008)  (0.004)  (0.0006) (0.0003)  (0.0006)  (0.0001)
d=60 0.0873 0.0387 0.0655 0.0238 0.0147 0.0147 0.0088
(0.004)  (0.002)  (0.005)  (0.002)  (0.0007)  (0.0006)  (0.0002)
d=90 0.1359 0.0574 0.0631 0.0321 0.0152 0.0166 0.0088
(0.005)  (0.002)  (0.005)  (0.002)  (0.001)  (0.0006)  (0.0002)
d=5 0.2239 0.1478 0.2164 0.2239 0.2330 0.6114 0.2086
(0.005)  (0.005)  (0.005)  (0.005)  (0.005)  (0.001)  (0.003)
d=30 0.3633 0.3425 0.2486 0.2721 0.2810 0.6386 0.2075
(2.2) (0.01) (0.02)  (0.006)  (0.006)  (0.01)  (0.002)  (0.003)
d =60 0.4663 0.4893 0.2550 0.2703 0.2637 0.6842 0.2065
(0.009)  (0.01)  (0.006)  (0.007)  (0.008)  (0.003)  (0.003)
d=290 0.5176 0.5429 0.2666 0.2661 0.2489 0.7337 0.2171

(0.006)  (0.009)  (0.006)  (0.007)  (0.006)  (0.004)°  (0.004)

Table 2.2. Variable selection result by Gc out of 100 replicates for each d; For the number of selected variables > 7 of d = 30, 60
and 90, 7~ are selected for the model (1.1), 8~9 variables for the model (2.1) and 7~8 variables for the model {2.2) on average.

Models number of predictors # selected < 4 5 6 >7
d=5 0(0) 100(100) 0(0) 0(0)
w1 d=30 2(2) 50(50) 29(29) 19(19)
' d=60 10(10) 61(59) 19(19) 10(10)
d=90 13(13) 67(66) 17(15) 3(3)
i=5 0(0) 100(100) 0(0) 0(0)
1) 'd =30 13(13) 18(10) 19(17) 50(46)
: d =60 : - 27(27) 27(19) 23(13) 23(17)
d=90 29(29) 28(19) 23(18) 20(15)
d=5 1) 99(99) 0(0) 0(0)
2.2) d=30 27(25) 24(21) 26(26) 23(22)
’ d =60 37(35) 30(25) 21(19) 12(12)
d=90 © 55(49) 19(14) 12(12) 14(14)

We are also interested in the accuracy of variable selection results. The variable selection results
of GUIDE constant(Gc) and GUIDE stepwise(Gs) are summarized in the Table 2.2 and 2.3. The
numbers in the parenthesis are number of cases in which all the selected variables are important
(when 5 or less variables are selected), or all the five important variables are included among the
selected variables (when 6 or more variables are selected).

We also try to improve RF method adding a screening step like Gc and Gs before RF is actually
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Table 2.3. Variable selection result by Gs out of 100 replicates for each d; For the number of selected variables > 7 of d = 30, 60
and 90, 15~ 17 are selected for the model (1.1), 16~25 variables for the modet (2.1), and 12~14 variables for the model {2.2)
on average.

Models number of predictors # selected < 4 5 6 >7
d=5 0(0) 100(100) 0(0) 0(0)
1 d=30 0(0) 0(0) 0(0) 100(100)
(L.1) d =60 0(0) 0(0) 0(0) 100(100)
d=90 0(0) 0(0) 0(0) - 100(100)
d=5 0(0) 100(100) 0(0) 0(0)
2.1 d=30 0(0) 0(0) 0(0) 100(100)
1) d=60 0(0) 0(0) 0(0) 100(100)
d=90 0(0) 0(0) 0(0) 100(100)
d=75 0(0) 100(100) 0(0) 0(0)
(22) d =30 0(0) 2(2) 5(5) 93(93)
' d = 60 0(0) 1(1) 5(5) 94(94)
d=90 0(0) 0(0) 3(3) 97(97)

executed, which is similar to two-step GUIDE and get a fairly good result from the GeRF(Gc for
the first step and RF for the second step) and GsRF(Gs for the first step and RF for the second
step). All the simulation results are presented in Figure 2.1.

2.4.2. Real data analysis We prepare ten real datasets (Table 2.4) to compare the performance of
the algorithms. The algorithms used for this purpose are two-step GUIDE(Gcs, Gss), multi-step
GUIDE(Gs. s), GUIDEd-Random Forest(GsRF), GUIDE stepwise without noise variable(Gs’) and
MARS. Unlike the result of previous simulation study, GcRF performs very poor in the real data
analysis. This is due to too aggressive variable selection result from the screening step of Ge for the
real data sets, which means too many variables are removed by the first step of G¢. In addition, with
categorical variables being included, Gs tends to select the important variables better compared to
Gc. Therefore, we use GsRF method instead of GcRF for the real data.

Let M denote total number of predictors without any noise variables. The data sets we use are
generated as follows. For each data set, 0.5 x M noise variables following N(0,1) are added and
denoted by “noise0.5”. Similarly, 1 x M noise variables are added and denoted by “noisel”, 2x M by
“noise2” and 4 x M by “noised”. Finally, these data sets with noise variables are randomly divided
into ten parts, and each one of them is used for the testing sample, and the rest of them, nine parts
are merged to be used for the learning sample. This ten-fold cross validation gives ten MSE’s for
each case, and we take the average to compare. Therefore, we can see the pattern through each
average MSE of “noise0.5”, “noisel”, “noise2” and “noise4” for the algorithms, which is generally
stable for all two-step methods on each data set. Since most of algorithms produce less MSE’s than
Gs’, they could be regarded as good ones in terms of prediction accuracy. We could also compare
the algorithms by the geometric mean of relative MSE’s compared with that of Gs’ across ten data
sets. All the algorithms except MARS look quite stable (Figure 2.2).

3. Conclusion and Future Work

The simulation study shows that the performance of multi-step GUIDE is effective, demonstrating
much improvement over a single tree algorithm. It performs better than Random Forest and MARS
even when many irrelevant variables are added to the model. It generally selects the important
variables correctly with relatively few irrelevant variables, which gives good prediction accuracy.
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Figure 2.1. Comparison of algorithms for simulation model (1.1} , (2.1) and (2.2)
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Table 2.4. Real data sets description (No noise variable)

Dataset # of numerical # of categorical

Name # of sample variable variafle Source
Abalone 4177 7 1 UcCl
Ais 202 11 1 Cook and Weisberg (1994)
Alcohol 2467 12 6 Kenkel and Terza (2001)
Amenity 3044 19 2 Chattopadhyay (2003)
Baseball 263 16 4 Statlib
Boston 506 13 0 Belsley (1980)
Cane 3775 6 3 Denman and Gregory (1998)
College 694 23 1 Statlib
Deer 654 10 3 Onoyama at al. (1998)
Enroll 258 6 0 Liu and Stengos (1999)

Geometric Mean of Relative MSE’s
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Figure 2.2. Comparison of algorithms for real data

In addition to prediction accuracy, the multi-step GUIDE is an economical algorithm in terms of
computation time. After the first iteration of variable selection step is executed, the remaining
steps go very fast since quite a few noise variables are removed in the first iteration. So, the multi-
step algorithm does not take much more time than running GUIDE just once. For example, in
the case of 90 predictors, multi-step GUIDE takes less than 7 seconds per simulation while simple
GUIDE takes about 5 seconds(based on the machine with Intel 2.8Ghz Pentium 4 processor). In
fact, GUIDE itself is known to be a fast algorithm.

As a variable selection tool, GUIDE screening step can be used for other algorithms. We see that
Random Forest shows good prediction accuracy in the real data example, but it could be improved
with GUIDE variable selection step when there are many noise variables. We can think about the
application of multi-step approach to the classification. In the similar setting as the one used for
regression trees in this paper, we can consider efficient ways to detect important variables in the
classification problem. One approach is using the classification tree algorithms. It could be an easy
and simple shortcut to do such a job among many possible methods for this problem.
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