Poly(glycolide-co-$\varepsilon$-caprolactone) 공중합체의 합성 및 특성 분석

Synthesis and Characterization of Poly(glycolide-co-$\varepsilon$-caprolactone)

  • 박남집 (충남대학교 유기소재.섬유시스템공학과) ;
  • 지민호 (충남대학교 유기소재.섬유시스템공학과) ;
  • 송승호 ((주)메타바이오메드 기술연구소) ;
  • 안상국 ((주)메타바이오메드 기술연구소) ;
  • 최교창 ((주)메타바이오메드 기술연구소) ;
  • 백두현 (충남대학교 유기소재.섬유시스템공학과)
  • Park, Nam-Jib (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Jee, Min-Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Song, Seung-Ho (R&D Team, Meta-Biomed Co. Ltd.) ;
  • Ahn, Sang-Kook (R&D Team, Meta-Biomed Co. Ltd.) ;
  • Choi, Kyo-Chang (R&D Team, Meta-Biomed Co. Ltd.) ;
  • Baik, Doo-Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 투고 : 2009.12.17
  • 심사 : 2010.02.09
  • 발행 : 2010.02.28

초록

Poly(gylcolide-co-$\varepsilon$-caprolactone)(PGCL) was synthesized by bulk ring-opening polymerization of glycolide and $\varepsilon$-caprolactone using stannous octoate as a catalyst. Polymerization was conducted at a constant molar ratio of glycolidel-$\varepsilon$-caprolactone (55/45). The changes of copolymer chain structure according to the reaction conditions such as reaction time, temperature and catalyst feed ratio were studied by using $^1H$-NMR spectroscopy. The effects of reaction time and catalyst feed ratio on the chain microstructure of the final PGCL copolymers were found to be significant. The average sequence length of glycolyl segments in the copolymer decreased with transesterification during polymerization, which made PGCL microstructure more random.

키워드

과제정보

연구 과제 주관 기관 : (주)메타바이오메드

참고문헌

  1. L. S. Nair and C. T. Laurencin, "Biodegradable Polymers as Biomaterials", Prog Polym Sci, 2007, 32, 762-798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
  2. A. C. Albertsson and I. K. Varma, "Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Application", Biomacromolecules, 2003, 4, 1466-1486. https://doi.org/10.1021/bm034247a
  3. H. Shinoda and M. Ajioka, "Degrable Monofilament and Preparation Process Thereof", US Patent, 6,090,910(2000).
  4. M. S. Roby and Y. Jiang, "Absorbable Block Copolymers and Surgical Articles Fabricated Therefrom", US Patant, 6,277,927(2001).
  5. P. K. Jarrett, L. Rosati, and D. J. Casey, "Segmented Absorbable Copolymer", US Patent, 5,252,701(1993).
  6. D. H. Baik, M. H. Jee, N. J. Park, and J. H. Park, "Synthesis of PGCL for Suture Application", University Industry Collaboration Foundation, Chungnam National University, 2009.
  7. D. D. Jamiolkowski and S. W. Shalaby, "Surgical Articles of Copolymers of Glycolide and $\epsilon$-caprolactone and Methods of Producing the Same", US Patent, 4,700,704(1987).
  8. R. S. Bezwada, D. D. Jamiolkowski, and S. W. Shalaby, "Segmented Copolymers of $\epsilon$-caprolactone and Glycolide", US Patent, 5,133,739(1992).
  9. R. S. Bezwada, D. D. Jarniolkowski, and I. Y. Lee, "Monocryl Suture, a New Ultra-pliable Absorbable Monofilament Suture", Biomaterials, 1995, 16, 1141-1148. https://doi.org/10.1016/0142-9612(95)93577-Z
  10. A. Pandey, G. C. Pandey, and P. B. Aswath, "Synthesis of Polylactic Acid-polyglycolic Acid Blends Using Microwave Radiation", Journal of the Mechanical Behavior of Biomedical Materials I, 2008, 227-233.
  11. P. Dobrzynski, "Synthesis of Biodegradable Copolymers with Low-toxicity Zirconium Compound III Synthesis and Chain-microstructure Analysis of Terpolymer Obtained from L-Iactide, Glycolide, and $\epsilon$-caprolactone Initiated by Zirconiurn(IV) Acetylacetonate", J Polym Sci: Part A : Polym Chem, 2002, 40, 3129-3143. https://doi.org/10.1002/pola.10401
  12. H. R. Kricheldorf and T. Mang, "Polylactone 1. Copolymerization of Glycolide and $\epsilon$-caprolactone", Macromolecules, 1984,17,2173-2181. https://doi.org/10.1021/ma00140a051
  13. J. Kasperczyk, "Copolymerization of Glycolide and $\epsilon$- caprolactone, 1 Analysis of the Copolymer Microstructure by Mean of $^{1}H$and $^{13}C$ NMR Spectroscopy", Macromol Chem Phys, 1999, 200, 903-910. https://doi.org/10.1002/(SICI)1521-3935(19990401)200:4<903::AID-MACP903>3.0.CO;2-6
  14. Z. Wei, L. Liu, C. Qu, and M. Qi, "Microstructure Analysis and Thermal Properties L-Iactide/$\epsilon$-caprolactone Copolyemers Obtained with Magnesium Octoate", Polymer, 2009, 50, 1423-1429. https://doi.org/10.1016/j.polymer.2009.01.015
  15. J. W. Pack, S. H. Kim, I. W. Cho, S. Y. Park, and Y. H. Kim, "Microstructure Analysis and Thermal Property of Copolymers Made of Glycolide and $\epsilon$-caprolactone by Stannous Octoate", J Polym Sci: Part A: Polym Chem, 2002, 40, 544-554. https://doi.org/10.1002/pola.10123
  16. J. Kasperczyk, S. Si, J. Jaqorska, P. Dobrzynski, and M. Vert, "Degradation of Copolymers Obtained by Ringopening Polymerization of Glycolide and $\epsilon$-caprolactone: A High Resolution NMR and ESI-MS Study", Polymer Degration and Stability, 2008, 93, 990-999. https://doi.org/10.1016/j.polymdegradstab.2008.01.019
  17. D. K. Cho, J. W. Park, S. H. Kim, Y. H. Kim, and S. S. Im, "Effect of Molecular Orientation on Biodegradability of poly(glycolide-co-$\epsilon$-caprolactone )", Polymer Degradation and Stability, 2003, 80, 223-232. https://doi.org/10.1016/S0141-3910(02)00402-0
  18. S. Li, P. Dobrzynski, J. Kasperczyk, M. Bero, C. Braud, and M. Vert, "Structure-property Relationships of Copolymers Obtained by Ring-opening Polymerization of Glycolide and $\epsilon$-caprolactone. Part 2. Influence of Composition and Chain Microstructure on the Hydrolytic Degradation", Biomacromolecules, 2005, 6, 489-497. https://doi.org/10.1021/bm049458+
  19. P. Dobrzynski, S. Li, J. Kasperczyk, and M Bero, "Structureproperty Relationships of Copolymers Obtained by Ringopening Polymerization of Glycolide and $\epsilon$-caprolactone", Biomacromolecules, 2005, 6, 483-488. https://doi.org/10.1021/bm0494592
  20. M. Bero, B. Czapla, P. Dobrzynski, H. Janecxek, and J. Kasperczyk, "Copolymerization of Glycoide and $\epsilon$-caprolactone, 2 Random Copolymerization in the Presence of Tin Octoate", Macromol Chem Phys, 1999, 200, 911-916. https://doi.org/10.1002/(SICI)1521-3935(19990401)200:4<911::AID-MACP911>3.0.CO;2-A