Structure and Property Relations in Heat-treated para-Aramid Fibers

파라계 아라미드 섬유의 열처리에 따른 구조, 물성 상관관계

  • Choi, Jin-Uk (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Jee, Min-Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Min-Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Jin-Soo (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Baik, Doo-Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 최진욱 (충남대학교 유기소재.섬유시스템공학과) ;
  • 지민호 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이민호 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이진수 (충남대학교 유기소재.섬유시스템공학과) ;
  • 백두현 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2010.01.02
  • Accepted : 2010.02.10
  • Published : 2010.02.28

Abstract

The structure-property relation of para-aramid fibers heat-treated under various conditions was investigated. The effect of heat-treatment on the mechanical properties of the fibers was also studied. Tensile strength and strain at break decreased and tensile modulus increased with increasing heat-treatment temperature. Tensile modulus also increased with increasing draw ratio. Structural characterization was carried out by using wide angle X-ray scattering (WAXS) method. Both the apparent crystal sizes (ACS) measured from the broadening of reflection peaks of (004), (110) and (200) planes and the orientation angle obtained from azimuthal scan along the (200) direction were found to increase with increasing heat-treatment temperature and draw ratio.

Keywords

References

  1. H. H. Yang, "Kevlar Aramid Fiber", John Wiley & Sons, New York, 1993.
  2. M. G. Northolt and J. J. van Aartsen, "Chain Orientation Distribution and Elastic Properties of Poly(p-phenylene terephthalarnide), a 'rigid rod' Polymer", J Polym Sci: Polyrn Symp, 1977, 58, 283-296.
  3. J. R. Brown and A. J. Power, "Thermal Degradation of Aramids : Part I-Pyrolysis/gas Chromatography/mass Spectrometry of Poly(l,3-phenylene isophthalamide) and Poly (l,4-phcnylene terephthalamide)", Polymer Degradation Stability, 1982, 4, 379-392. https://doi.org/10.1016/0141-3910(82)90044-1
  4. K. G. Lee, R. Barton, Jr., and J. M. Schultz, "Structure and Property Development in Poly(p-phenylene terephthalamide) during Heat Treatment under Tension", J Polym Sci: Part B: Polym Phys, 1995,33. 1-14. https://doi.org/10.1002/polb.1995.090330101
  5. A. M. Hindeleh and S. M. Abdo, "Effects of Annealing on the Crystallinity and Microparacrystallite Size of Kevlar 49 Fibres", Polymer, 1989, 30, 218-224. https://doi.org/10.1016/0032-3861(89)90108-0
  6. Y. Rao, A. J. Waddon, and R. J. Farris, "Structure-property Relation in Poly(p-phenylene terephthalamide)(PPTA) Fibers", Polymer, 2001,42, 5937-5946. https://doi.org/10.1016/S0032-3861(00)00905-8
  7. T. M. Wu and J. Blackwell, "Comparison of the Axial Correlation Lengths and Paracrystalline Distortion for Technora and Kevlar Aromatic Polyamide Fibers", Macromolecules, 1996,29.5621-5627. https://doi.org/10.1021/ma951426e
  8. K. Haraguchi, T. Kajiyama. and M. Takayanagi, "Effect of Coagulation Conditions on Crystal Modification of Poly(p-phenylene terephthalamide)", J Appl Polym Sci, 1979, 23, 915-926. https://doi.org/10.1002/app.1979.070230326
  9. S. R. Choi. T. W. Son. and D. H. Jang, "Preparation of High Modulus Aramid Fiber", J Korean Fiber Soc. 1997,34, 868- 876.
  10. K. Tashiro, M. Kobayashi, and H. Tadokoro. "Elastic Moduli and Molecular Structures of Several Crystalline Polymers, Including Aromatic Polyamides", Macromolecules, 1977, 10, 413-420. https://doi.org/10.1021/ma60056a033
  11. M. Panar, P. Avakian, R. C. Blume. K. H. Gardner, T. D. Gierke. and H. H. Yang. "Morphology of Poly(p-phenylene terephthalamide) Fibers", J Polym Sci: Polym Phys, 1983. 21, 1955-1969. https://doi.org/10.1002/pol.1983.180211006
  12. C. Y. Yue, G. X. Sui, and H. C. Looi, "Effects of Heat Treatment on the Mechanical Properties of Kevlar-29 Fibre", Compos Sci Technol, 2000, 60,421-427, https://doi.org/10.1016/S0266-3538(99)00137-2
  13. M. G. Dobb, D. J. Johnson, and B. P. Saville, "Supramolecular Structure of a High-modulus Polyaromatic Fiber (Kevlar 49)", J Polym Sci: Polym Phys, 1977, 15,2201-2211. https://doi.org/10.1002/pol.1977.180151212
  14. R. J. Morgan, C. O. Pruenda, and W. J. Steele, "The Relationship between the Physical Structure and the Microscopic Deformation and Failure Processes of Poly(p-phenylene terephthalamide) Fibers", J Polym Sci: Polym Phys, 1983, 21, 1757-1783. https://doi.org/10.1002/pol.1983.180210913
  15. A. M. Hindeleh, N. A. Halin, and K. A. Zig, "Solid-state Morphology and Mechanical Properties of Kevlar 29 Fiber", J Macromol Sci Part B: Phys, 1984, 23, 289-309. https://doi.org/10.1080/00222348408219461
  16. R. J. Young, D. Lu, R. J. Day, W. F. Knoff, and H. A. Davis, "Relationship between Structure and Mechanical Properties for Aramid Fibres", J Mat Sci, 1992, 27, 5431- 5440. https://doi.org/10.1007/BF00541602