Geological Structures and Their Relation to Groundwater System around K-1 Oil Stockpile

K-1 기지 주변 지질 구조와 지하수위 변동 특성

  • Moon, Sang-Ho (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Young-Seog (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Ha, Kyoo-Chul (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Won, Chong-Ho (Korea Water Resources Corporation (K-Water)) ;
  • Lee, Jin-Yong (Department of Geology, Kangwon National University)
  • 문상호 (한국지질자원연구원 지구환경연구본부) ;
  • 김영석 (부경대학교 지구환경과학과) ;
  • 하규철 (한국지질자원연구원 지구환경연구본부) ;
  • 원종호 (한국수자원공사 조사기획처) ;
  • 이진용 (강원대학교 지질학과)
  • Received : 2010.01.22
  • Accepted : 2010.04.20
  • Published : 2010.04.28

Abstract

The most serious problem in oil stockpiles with artificial underground cavern is maintaining the stability of ground water system. In order to understand the ground water system around K-1 site, we determined the regional flow direction and level distribution of groundwater, and investigated the major geologic factors influencing their flow system. Reactivated surface along the contact between granite and gneiss, and fractures and faults along the long acidic dyke may contribute as important pathways for groundwater flow. Within K-1 site, groundwater level fluctuation is closely related to the rainfall events and injection from surface or influx water. In this project, the effect of groundwater pumping from the southern wells was examined. Based on equations relating water level drawdown to pumping rate at those wells, their pumped outflow of groundwater ranged from $80\;m^3$/day to less than $250\;m^3$/day. The modeling results with MODFLOW imply that the previous groundwater pumping at distance of 1.2 km may not affect the groundwater level variations of the K-1 site. However, continuous pumping work at quantity over $250\;m^3$/day in this area will be able to affect the groundwater system of the K-1 site, particularly along the acidic dyke.

K-1 유류비축기지는 인위적 지하 공동을 이용하기 때문에 주변 지하수계의 안정이 중요하다. 기지 주변의 지하수계 특성을 이해하기 위해 광역적 지하수 유동특성, 기지내 공간적 지하수위 분포 양상을 파악하였으며, 지하수 유동에 영향을 미치는 지질 요소를 검토하였다. 연구지역에서 지히수 유동에 크게 영향을 미칠 수 있는 지질구조적 특성은 2가지로서, 편마암-화강암 관입경계를 따라 재활성된 부분과 산성 암맥을 따라 발달한 단열 및 단층이다. 기지 내 4개 관측공들의 수위변동 양상을 검토한 결과, 대부분 강우와 지표수 유입 혹은 공동내 주입수에 의해 지하수위 변동이 영향을 받고 있는 것으로 나타났다. 이 연구에서는 기지 남쪽에 위치한 관정으로부터의 양수가 기지의 지하수위 변동에 미치는 영향에 대해 검토하였다. 산성 암맥을 따라 기지로부터 1.2km 남쪽에 위치한 지점에서의 양수작업은 관측 당시에 기지내 지하수위 변동에 영향을 미치지 않았으나, 모델링 결과에 의하면 $250\;m^3$/day 이상의 양수량으로 지속적인 양수작업이 진행되는 경우 지하수 시스템 안정을 위해 주의가 요구된다.

Keywords

Acknowledgement

Grant : 지구환경변화 대응 지하수 확보 통합 솔루션 개발

Supported by : 한국지질자원연구원

References

  1. Chung, I. M., Kim, J., Cho, W. and Kim, N. W. (2008) A solute transport analysis around underground storage cavern by using eigenvalue numerical technique. The Journal of Engineering Geology, vol.18, p.381-391.
  2. de Marsily, G (1985) Flow and transport in fractured rock. Memoirs. Hydrogeology of Rocks of Low Permeability: Tucson, Ariz., International Association of Hydrogeologists, p.267-277.
  3. Domenico, P.A. and Schwartz, F.W. (1990) Physical and Chemical Hydrogeology. John Wiley & Sons, New York, 824p.
  4. Geostock (1977) Summary of the results of K1 site investigation, Seoul, Korea.
  5. Goodall, D. C., Aberg, B.and Brekke, T. L. (1994) Fundamental of gas containment in unlined rock caverns. Rock Mechanics and Rock Engineering, vol.21, p.235-258.
  6. Jung, H.-Y., Song, M.-Y. and Lee, K.-J. (2001) A study of numerical analysis on hydrogeological influence by groundwater development around underground oil storage cavern. The Journal of Engineering Geology, vol.11, p.37-50.
  7. Kim, H. C. and Bae, D.-J. (1994) Hot-spring survey report at Kwangjang area, Seoul. KIGAM 94-12(No. 158), p.96.
  8. Kim, H.-Y. and Kim, J.-H. (2005) Underground storage of hydrocarbon in Korea. Journal of Geosystem Engineering. vol.42, p.280-286.
  9. Kim, J., Cho, W., Chung, I. M. and Heo J.-H. (2007) On the stochastic simulation procedure of estimating critical hydraulic gradient for gas storage in unlined rock caverns. Geosciences Journal, vol.11, p.249-258. https://doi.org/10.1007/BF02913938
  10. Kim, Y.-S., Peacock, D.C. and Sanderson, D.J. (2004) Fault damage zones. Journal of Structural Geology, 26, 503-517. https://doi.org/10.1016/j.jsg.2003.08.002
  11. KNOC(Korea National Oil Corporation) (1996) K-1 report for hydrological investigation in relation to supplementary base.
  12. KNOC(Korea National Oil Corporation) (1997a) K-1 report for hydrological investigation in relation to supplementary base.
  13. KNOC(Korea National Oil Corporation) (1997b) Collection of hydrological test for K-1 site.
  14. KNOC(Korea National Oil Corporation) (1998a) K-1 report for hydrological investigation in relation to Walker Hill (I).
  15. KNOC(Korea National Oil Corporation) (1998b) K-1 report for hydrological investigation in relation to Walker Hill (II).
  16. Micklethwaite, S. and Cox, S. (2004) Fault-segment rupture, aftershock-zone fluid flow, and mineralization. Geology, 32, 813-816. https://doi.org/10.1130/G20559.1
  17. MOCT(Ministry of Construction and Transportation), KWater(Korea Water Resources Corporation) and KIGAM(Korea Institute of Geoscience and Mineral Resources) (2005) Research report on mitigation measures for potential groundwater hazards areas. 579p.
  18. Won, C. K., Paik, K. H., Chi, J. M., Ku, M. O. and Ahn, H. R. (1981) Geologic map of Korea (1:50,000), Ddugseom Sheet. KIER.