Enhanced Phytoremediation by Echinochloa crus-galli in Arsenic Contaminated Soil in the Vicinity of the Abandoned Mine

폐광지역 비소오염 토양에 대한 피(Echinochloa crus-galli)를 이용한 보강된 식물상복원공법

  • 박지연 (광주과학기술원 환경공학과) ;
  • 김주용 (광주과학기술원 환경공학과) ;
  • 이병태 (광주과학기술원 환경공학과) ;
  • 김경웅 (광주과학기술원 환경공학과) ;
  • 이진수 (한국광해관리공단 기술연구소)
  • Received : 2009.11.18
  • Accepted : 2010.03.10
  • Published : 2010.04.28

Abstract

In order to deal with the problem that phytoremediation takes long time in achieving the practical effect, the enhanced phytoremediation by Barnyard grass (Echinochloa crus-galli) was conducted. In addition, we examined the synergistic effect by adding PSM (phosphate -solubilizing microbes) and EDTA (ethylenediaminetetraacetic acid) to the arsenic contaminated soil in the vicinity of the abandoned mine. The removal efficiency of arsenic in the site with PSM application increased about 16% when compared to control site, which was due to increase of plant biomass. The EDTA has been successfully utilized in respect of enhanced mobility and solubility of arsenic in the soil. As a result, BF (bioaccumulation factor) significantly increased but the inhibition of plant growth resulted in 20% reduction of arsenic removal efficiency. The application of PSM and EDTA may enhance the efficiency of phytoremediation. However, the time and method of EDTA application should be further examined to reach the maximum removal efficiency.

폐광지역 비소오염 토양에 이용될 식물상복원공법으로서 논에서 쉽게 발견되는 피의 적용가능성을 알아보고자 하였다. 식물을 이용한 토양 정화 공법이 가지는 장기간의 처리시간이 소요된다는 단점을 해결하고자 PSM(phosphate-solubilizing microbes)과 EDTA(ethylenediaminetetraacetic acid)를 처리하여 그 상승효과를 관찰하였다. PSM을 처리한 시험구에서는 식물의 바이오매스가 증가하여 비교 시험구에 비하여 비소재거 효율이 약 16% 정도 증가하였다. EDTA 처리구에서는 토양 내 중금속의 이동성야 증가하여 BF(bioaccumulation factor) 는 증가하였으나, EDTA가 식풀의 성장을 저해해 오히려 제거 효율이 20% 정도 감소하는 결과를 가져왔다. 따라서 식물성복원공법에 PSM 및 EDTA의 처리는 식물의 비소 흡수를 어느 정도 증대시킬 수는 있으나, 특히 EDTA를 처리할 경우에는 처리 시기 및 처리량의 선택에 있어서 식물의 성장을 저해하지 않도록 해야 하며, 지속적인 모니터링이 요구된다는 결과를 얻었다.

Keywords

References

  1. Aboulroos, S.A., Helal, M.I.D. and Kamel, M.M. (2006) Remediation of Pb and Cd Polluted Soils Using in situ Immobilization and Phytoextraction Techniques. Soil & Sediment Contamination, v.15, p.199-215. https://doi.org/10.1080/15320380500506362
  2. Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O. and Gussman. C. (1997) Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environ. Sci. Technol., v.31, p.860-865. https://doi.org/10.1021/es960552a
  3. Brown, M. (1974) Seed and root bacterization. Ann. Rev. Phytopathol., v.12, p.181-197. https://doi.org/10.1146/annurev.py.12.090174.001145
  4. Cunningham, S.D. and Ow, D.W. (1996) Promises and prospects of phytoremediation. Plant Physiology, v.110, p.715-719. https://doi.org/10.1104/pp.110.3.715
  5. Chen, Y., Li, X.D. and Shen, Z.G. (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, v.57, p.187-196. https://doi.org/10.1016/j.chemosphere.2004.05.044
  6. Davison, J. (1988) Plant beneficial bacteria. Nature Biotechnology, v.6, p.282-286. https://doi.org/10.1038/nbt0388-282
  7. Elliott, H.A. and Herzig, L.M. (1999) Oxalate extraction of Pb and Zn from polluted soils: solubility limitations. J. Soil. Contam., v.8(1), p.105-116. https://doi.org/10.1080/10588339991339252
  8. Elliott, H.A. and Shastri, N.L. (1999) Extraction decontamination of metal-polluted soils using oxalate. Water, Air, and Soil Pollut., v.110, p.335-346. https://doi.org/10.1023/A:1005067404259
  9. Glick, B.R., Penrose, D.M. and Li, J. (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol., v.190, p.63-68. https://doi.org/10.1006/jtbi.1997.0532
  10. Kaschl, A., Romheld, V. and Chen, Y. (2002) Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost. J. of Environmental Quality, v.31, p.1885-1892. https://doi.org/10.2134/jeq2002.1885
  11. Kloepper, J.W., Lifshitz, R. and Zablotowicz, R.M. (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol., v.7, p.39-43. https://doi.org/10.1016/0167-7799(89)90057-7
  12. Lambert, B. and Joos, H. (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol., v. 7, p.215-219. https://doi.org/10.1016/0167-7799(89)90107-8
  13. Patten, C.L. and Glick, B.R. (1996) Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol., v.42, p.207-220. https://doi.org/10.1139/m96-032
  14. Rodriguez, H. and Fraga, R. (1999) Phosphate solublizing bacteria and their role in plant growth promotion, Biotechnology Advances. v.17, p.319-339. https://doi.org/10.1016/S0734-9750(99)00014-2