Optimum Conditions for the Culture of Hericium erinaceum in a Jar Fermenter with the Addition of Ginseng Extract in the Liquid Medium

수삼추출물을 이용한 노루궁뎅이버섯 균사체의 jar fermenter에서의 발효조건 최적화

  • Park, Chang-Kyu (Division of Food and Biotechnology, Chungju National University) ;
  • Tu, Qi (Division of Food and Biotechnology, Chungju National University) ;
  • Cho, Ju-Hyun (Hurum Central Research Institute) ;
  • Yu, Kwang-Won (Division of Food and Biotechnology, Chungju National University) ;
  • Jeong, Heon-Sang (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, Hyeon-Yong (Department of Biomaterials Engineering, Kangwon National University) ;
  • Jeong, Jae-Hyun (Division of Food and Biotechnology, Chungju National University)
  • 박창규 (충주대학교 식품생명공학부) ;
  • 도기 (충주대학교 식품생명공학부) ;
  • 조주현 ((주)휴럼 중앙연구소) ;
  • 유광원 (충주대학교 식품생명공학부) ;
  • 정헌상 (충북대학교 식품공학과) ;
  • 이현용 (강원대학교 생물소재공학) ;
  • 정재현 (충주대학교 식품생명공학부)
  • Received : 2009.10.06
  • Accepted : 2009.12.05
  • Published : 2010.02.28

Abstract

To obtain functional materials from a submerged culture of Hericium erinaceum, a suitable basal medium for flask culture was screened and the optimal culture conditions in a jar fermenter were investigated with the addition of ginseng extracts (GE) to the basal liquid medium. Of all tested basal liquid media, the mushroom complete medium (MCM) supplemented with 0.5% of GE produced the highest mycelial dry weight (MDW) of 5.91 g/L in the flask, which reached a plateau at $25^{\circ}C$, pH 5.5 after 10 days. The submerged culture conditions for the mass production of mycelia in a 50 L jar fermenter were also optimal at $25^{\circ}C$, pH 5.5, 120 rpm agitation speed and 0.4 vvm aeration rate. Under these conditions, the maximum MDW was produced, which reached a value of 4.28 g/L within 5 days. When we investigated the effects of the amount of GE in the MCM on the production of MDW in the jar fermenter, the addition of 5% GE (HE-GE-5) under the optimal culture conditions produced the maximum MDW (4.93 g/L). In addition, the crude polysaccharide of HE-GE-5 contained mainly neutral sugars (63.2%) with considerable amounts of uronic acid (19.3%) and a small amount of proteins (8.8%) and it had potent immunostimulation properties.

노루궁뎅이버섯 균사체(Hericium erinaceum)의 심부발효물로부터 기능성소재를 얻기 위하여 flask 배양에서 적당한 기본 배지를 선정하였고, jar fermenter에서 선정된 mushroom complete medium(MCM)에 수삼추출물을 첨가하여 최적 발효조건을 검토하였다. 기본 액체배지 중 수삼추출물이 0.5% 첨가된 MCM에서 $25^{\circ}C$, pH 5.5의 조건으로 10일 경과 후 5.89 g/L의 가장 높은 균사체 건조균체량(mycelial dry weight, MDW)을 나타내었다. 발효물의 대량생산을 위한 50 L jar fermenter의 액체배양에서도 $25^{\circ}C$, pH 5.5와 교반속도 120 rpm과 0.4 vvm의 통기속도로 최적화 되었으며, 이러한 조건하에서 5일 배양으로 최대 MDW인 4.28 g/L을 얻을 수 있었다. 또한 MCM에 첨가되는 수삼추출물의 양을 jar fermenter에서 검토한 결과, 수삼추출물 5%가 첨가되는 군(HE-GE-5)의 최적 발효조건하에서 4.93 g/L의 최대 건조균체량을 나타내었다. 한편 수삼추출물이 첨가된 노루궁뎅이버섯 균사체의 발효물의 특성을 검토하기 위하여 심부발효물의 조다당획분을 조제한 후 구성분과 면역활성을 살펴본 결과, 최대 MDW를 나타낸 수삼추출물 5% 첨가 심부발효물의 조다당(HE-GE-CP-5)은 주로 중성당(63.2%)과 함께 상당량의 산성당(19.3%)과 소량의 단백질(8.8%)로 구성됨을 알 수 있었으며 마이토젠과 골수세포 증식활성이 균사체만의 심부발효물 조다당보다 증강되고 있음을 알 수 있었다.

Keywords

References

  1. Choi KT. Botanical characteristics, pharmacological effects, and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol. Sinic. 29: 1109-1118 (2008) https://doi.org/10.1111/j.1745-7254.2008.00869.x
  2. Wang BX, Cui JC, Liu AJ. The effect of ginseng on immune responses. pp. 519-527. In: Advances in Chinese Medicinal Materials Research. Chang HM, Yeung HW, Tso WW, Koo A (eds.). World Scientific Publishing Co., Toh Tuck, Singapore (1985)
  3. Yin J, Zhang H, Ye J. Traditional chinese medicine in treatment of metabolic syndrome. Endocr. Metab. Immune Disord. Drug Targets 8: 99-111 (2008) https://doi.org/10.2174/187153008784534330
  4. Park CK, Jeon BS, Yang JW. The chemical components of Korean ginseng. Food Ind. Nutr. 8: 10-23 (2003)
  5. Ko SR, Choi KJ, Kim HK, Han KW. Comparison of proximate composition, mineral nutrient, amino acid, and free sugar contents of several Panax species. Korean J. Ginseng Sci. 20: 36-41 (1996)
  6. Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55: 1-99 (2009)
  7. Kaku T, Miyata T, Uruno T, Sako I, Kinoshita A. Chemico-pharmacological studies on saponins of Panax ginseng C.A. Meyer. II. Pharmacological part. Arzneimittel-Forsch 25: 539-547 (1975)
  8. Li GX, Liu ZQ. The protective effects of ginsenosides on human erythrocytes against hemin-induced hemolysis. Food Chem. Toxicol. 46: 886-892 (2008) https://doi.org/10.1016/j.fct.2007.10.020
  9. Choi HJ, Han HS, Park JH, Son JH, Bae JH, Seung TS, Choi C. Antioxidative, phospholipase A2 inhibiting, and anticancer effect of polyphenol rich fractions from Panax ginseng C.A. Meyer. J. Korean Soc. Agric. Chem. Biotechnol. 46: 251-256 (2003)
  10. Song JY, Yi SY, Jung IS, Yun YS. Effect of polysaccharide extracted from Panax ginseng on murine hematopoiesis. J. Ginseng Res. 25: 63-67 (2001)
  11. Chang ST. Mushrooms and mushroom biology. pp. 1-13. In: Genetics and Breeding of Edible Mushrooms. Chang ST, Buswell JA, Miles PG (eds). Gordon & Breach Science Publisher, Philadelphia, PA, USA (1993)
  12. Sullivan R, Smith JE, Rowan NJ. Medicinal mushrooms and cancer therapy: Translating a traditional practice into Western medicine. Perspect. Biol. Med. 49: 159-170 (2006) https://doi.org/10.1353/pbm.2006.0034
  13. Isoda N, Eguchi Y, Nukaya H, Hosho K, Suga Y, Suga T, Nakazawa S, Sugano K. Clinical efficacy of superfine dispersed lentinan (beta-1,3-glucan) in patients with hepatocellular carcinoma. Hepatogastroenterology 56: 437-441 (2009)
  14. Zhong JJ, Tang YJ. Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Adv. Biochem. Eng. Biot. 87: 25-59 (2004)
  15. Yu KW, Kim YS, Shin KS, Kim JM, Suh HJ. Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus. Appl. Biochem. Biotech. 126: 35-48 (2005) https://doi.org/10.1007/s12010-005-0004-6
  16. Yoon TJ, Yu KW, Shin KS, Suh HJ. Innate immune stimulation of exo-polymers prepared from Cordyceps sinensis by submerged culture. Appl. Microbiol. Biot. 80: 1087-1093 (2008) https://doi.org/10.1007/s00253-008-1607-y
  17. Sugihara TF, Humfeld H. Submerged culture of the mycelium of various species of mushroom. Appl. Microbiol. 2: 170-172 (1954)
  18. Liu CY. Technique of cultivation of monkey-head mushroom. Edible Fungi 4: 33 (1981)
  19. Arnone A, Cardillo R, Nasini G, de Pava OV. Secondary mold metabolites: Part 46. Hericenes A-C and erinapyrone C, new metabolites produced by the fungus Hericium erinaceus. J. Nat. Prod. 57: 602-606 (1994) https://doi.org/10.1021/np50107a006
  20. Baek GY. Studies on the growth characteristics and functional screening of mycelia and fruiting body of Hericium erinaceum. MS thesis, Chungju National University, Chungju, Korea (2001).
  21. Ha TM, Ji JH, Jeong HK. A liquid cultivation of Hericium erinaceum hyphae using by-product of food, and health drink compositions containing hyphae extract thereof. Korea Patent 10-0187892 (1996)
  22. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  23. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acid. Anal. Biochem. 54: 484-489 (1973) https://doi.org/10.1016/0003-2697(73)90377-1
  24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  25. Sugawara I, Kimoto M, Fujimoto M, Ishizaka S, Tsuji T, Nishiyama T. MTT assay, rapid colorimetric assay applicable to cellular proliferation and cytotoxicity assay. Igakuno Ayumi 123: 733-735 (1984)
  26. Yu KW, Kiyohara H, Matsumoto T, Yang HC, Yamada H. Intestinal immune system modulating polysaccharides from rhizomes of Atractylodes lancea DC. Planta Med. 64: 714-719 (1998) https://doi.org/10.1055/s-2006-957564
  27. Page B, Page M, Noel C. A new fluorometric assay for cytotoxicity measurements in vitro. Int. J. Oncol. 3: 473-476 (1993)
  28. Mori K, Obara Y, Hirota M, Azumi Y, Kinugasa S, Inatomi S, Nakahata N. Nerve growth factor-inducing activity of Hericium erinaceus in 132N1 human astrocytoma cells. Biol. Pharm. Bull. 31: 1727-1732 (2008) https://doi.org/10.1248/bpb.31.1727
  29. Ueda K, Tsujimori M, Kodani S, Chiba A, Kubo M, Masuno K, Sekiya A, Nagai K, Kawagishi H. An endoplasmic reticulum (ER) stress-suppressive compound and its analogues from the mushroom Hericium erinaceum. Bioorg. Med. Chem. 16: 9467-9470 (2008) https://doi.org/10.1016/j.bmc.2008.09.044
  30. Kabbaj W, Breheret S, Guimberteau J, Talou T, Olivier JM, Bensoussan M, Sobal M, Roussos S. Comparison of volatile compound production in fruit body and in mycelium of Pleurotus ostreatus identified by submerged and solid-state cultures. Appl. Biochem. Biotech. 103: 463-469 (2002) https://doi.org/10.1385/ABAB:102-103:1-6:463
  31. Yang BK, Park JB, Song CH. Hypolipidemic effect of an exobiopolymer produced from a submerged mycelial culture of Hericium erinaceus. Biosci. Biotech. Bioch. 67: 1292-1298 (2003) https://doi.org/10.1271/bbb.67.1292
  32. Enman J, Hodge D, Berglund KA, Rova U. Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia. J. Agr. Food Chem. 56: 2609-2612 (2008) https://doi.org/10.1021/jf800091a
  33. Kenmoku H, Shimai T, Toyomasu T, Kato N, Sassa T. Erinacine Q, a new erinacine from Hericium erinaceum, and its biosynthetic route to erinacine C in the basidiomycete. Biosci. Biotech. Bioch. 66: 571-575 (2002) https://doi.org/10.1271/bbb.66.571
  34. Yim MH, Shin JW, Son JY, Oh SM, Han SH, Cho JH, Cho CK, Yoo HS, Lee YW, Son CG. Soluble components of Hericium erinaceum induce NK cell activation via production of interleukin-12 in mice splenocytes. Acta Pharmacol. Sinic. 28: 901-907 (2007) https://doi.org/10.1111/j.1745-7254.2007.00577.x
  35. Mizuno T, Wasa T, Ito H, Suzuki C, Ukai N. Antitumor-active polysaccharides isolated from the fruiting body of Hericium erinaceum, an edible and medicinal mushroom called yamabushitake or houtou. Biosci. Biotechnol. Biochem. 56: 347-348 (1992) https://doi.org/10.1271/bbb.56.347
  36. Siwulski M, Sobieralski K. Influence of some growing substrate additives on the Hericium erinaceum (Bull. ex Fr.) Pers. yield. Sodinikyste Darzininkyste 24: 2250-2253 (2005)
  37. Ko HG, Park HG, Park SH, Choi CW, Kim SH, Park WM. Comparative study of mycelial growth and basidiomata formation in seven different species of the edible mushroom genus Hericium. Bioresource Technol. 96: 1439-1444 (2005) https://doi.org/10.1016/j.biortech.2004.12.009
  38. Hassan FRH. Cultivation of the monkey head mushroom (Hericium erinaceus) in Egypt. J. Appl. Sci. Res. 3: 1229-1233 (2007)
  39. Yu KW, Kim YS, Shin KS, Kim JM, Suh HJ. Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus. Appl. Biochem. Biotech. 126: 35-48 (2005) https://doi.org/10.1007/s12010-005-0004-6
  40. Yang HS, Yu KW, Choi YM. Isolation of polysaccharides modulating mouse's intestinal immune system from peels of Citrus unshiu. J. Korean Soc. Food Sci. Nutr. 33: 1476-1485 (2004) https://doi.org/10.3746/jkfn.2004.33.9.1476