DOI QR코드

DOI QR Code

유근피로부터 분리한 hederagenin 3-O-b-D-glucopyranosyl(1→3)-a-L-rhamnopyranosyl(1→2)-a-L-arabinopyranoside (HDL)의 항산화 효과

Antioxidant Effect of Hederagenin 3-O-b-D-Glucopyranosyl(1→3)-a-L-Rhamnopyranosyl(1→2)-a-L-Arabinopyranoside (HDL) Isolated from Root Bark of Ulmus davidiana

  • 봉진구 (대구가톨릭대학교 의과대학 외과학교실) ;
  • 박윤엽 (대구가톨릭대학교 의과대학 생리학교실)
  • Bong, Jin-Gu (Department of Surgery, Catholic University of Daegu School of Medicine) ;
  • Park, Yoon-Yub (Department of Physiology, Catholic University of Daegu School of Medicine)
  • 투고 : 2010.01.07
  • 심사 : 2010.01.15
  • 발행 : 2010.02.28

초록

본 연구는 유근피(root bark of Ulmus davidiana)에서 분리한 화합물인 hederagenin 3-O-b-D-glucopyranosyl($1{\rightarrow}3$)-a-L-rhamnopyranosyl($1{\rightarrow}2$)-a-L-arabinopyranoside (HDL)을 이용하여 $CoCl_2$에 의해 생성된 ROS에 대한 항산화 기전을 밝히기 위하여, ROS 생성과 관련된 산화 효소 및 항산화 효소에 대한 저해효과를 조사하였다. 또한 HDL이 $CoCl_2$에 의해 생성된 ROS의 조절을 통해 산화적 스트레스와 관련된 단백질 발현 및 세포주기에 미치는 영향을 조사하였다. 그 결과 HDL은 $CoCl_2$에 의해 유발된 xanthine oxidase와 $H_2O_2$ 생성 증가를 억제하였고, 산화와 관련된 SOD, CAT의 활성을 증가시켜 $H_2O_2$의 가수분해를 촉진하였다. 그리고 HDL은 $CoCl_2$에 의해 유발된 ferritin의 손상과 ferritin iron의 방출을 억제하 였으며, 지질과산화의 증가를 억제하였다. 뿐만 아니라 HDL은 $CoCl_2$에 의해 증가된 G1 phase의 세포를 감소시켰으며, 세포주기와 관련된 p53 및 $p21^{CIP1/WAF1}$의 발현을 감소시켰다. 이러한 연구결과들은 HDL이 천연물로부터 유래한 독성이 없는 항산화제로서의 가능성을 제시한다.

We investigated the antioxidant effects of hederagenin 3-O-b-D-glucopyranosyl($1{\rightarrow}3$)-a-L-rhamnopyranosyl($1{\rightarrow}2$)-a-L-arabinopyranoside (HDL) isolated from root bark of Ulmus davidiana on the activity of enzymes related to reactive oxygen species (ROS) in human osteosarcoma U2OS cells. Cobalt chloride ($CoCl_2$), a transition metal, was used as an inducer of oxidative stress, generating hydrogen peroxide ($H_2O_2$) via increasing xanthine oxidase (XO) activity. The increased levels of $H_2O_2$, XO, ferritin, and ferritin iron by $CoCl_2$ were diminished effectively by co-treatment with HDL in U2OS cells. Furthermore, decreased levels of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) by $CoCl_2$ were highly increased by co-treatment with HDL in U2OS cells; however, the levels of glutathione peroxidase (GPx) did not change. The increased contents of TBARS related to lipid peroxidation were significantly reduced by HDL in U2OS cells. The concentration of GSH changed in a pattern that went against regulated TBARS by $CoCl_2$ and HDL. We examined the expression of p53, $p21^{CIP1/WAF1}$, and $p27^{KIP1}$ proteins related to oxidative stress and cell cycle regulation. As a result, the expression of $p27^{KIP1}$ modulated by $CoCl_2$ was not changed by HDL. However, the expression of p53 and $p21^{CIP1/WAF}$ increased by $CoCl_2$ was reduced by HDL in U2OS cells. Together with alteration of p53 and $p21^{CIP1/WAF1}$ proteins, the accumulated cells at G1 phase by $CoCl_2$ was decreased by HDL in U2OS cells. Our data suggests that HDL inhibits $CoCl_2$-generated ROS in U2OS cells, providing potentially new antioxidant compounds that are isolated from natural products.

키워드

참고문헌

  1. Aebi, H. 1984. Catalase in vitro. Meth. Enzymol. 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Anderson, M. E. 1985. Determination of glutathione and glutathione disulfide in biological samples. Meth. Enzymol. 113, 548-555. https://doi.org/10.1016/S0076-6879(85)13073-9
  3. Azad, N., Y. Rojanasakul, and V. Vallyathan. 2008. Inflammation and lung cancer: roles of reactive oxygen/ nitrogen species. J. Toxicol. Environ. Health. B Crit. Rev. 11, 1-15. https://doi.org/10.1080/10937400701436460
  4. Benzie, I. F. 1996. Lipid peroxidation: a review of causes, consequences, measurement and dietary influences. Int. J. Food Sci. Nutr. 47, 233-261. https://doi.org/10.3109/09637489609012586
  5. Buege, J. A. and S. D. Aust. 1978. Microsomal lipid Peroxidation. Meth. Enzymol. 52, 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6
  6. Cai, H. and D. G. Harrison. 2000. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res. 87, 840-844. https://doi.org/10.1161/01.RES.87.10.840
  7. Cantrill, R. C., G. W. Ells, A. C. DeMarco, and D. F. Horrobin. 1997. Mechanisms of the selective cytotoxic actions of certain essential fatty acids. Adv. Exp. Med. Biol. 400A, 539-544.
  8. Caron, M., M. Auclairt, A. Vissian, C. Vigouroux, and J. Capeau. 2008. Contribution of mitochondrial dysfunction and oxidative stress to cellular premature senescence induced by antiretroviral thymidine analogues. Antivir. Ther. 13, 27-38.
  9. Cerutti, P., R. Ghosh, Y. Oya, and P. Amstad. 1994. The role of the cellular antioxidant defense in oxidant carcinogenesis. Environ. Health Perspect. 10, 123-129.
  10. Chen, L. and H. Y. Zhang. 2007. Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin-3-gallate. Molecules 12, 946-957. https://doi.org/10.3390/12050946
  11. Christova, T. Y., D. B. Duridanova, and M. S. Setchenska. 2002. Enhanced heme oxygenase activity increases the antioxidant defense capacity of guinea pig liver upon acute cobalt chloride loading: comparison with rat liver. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 131, 177-184. https://doi.org/10.1016/S1532-0456(01)00287-3
  12. De Oliveira, S. Q., F. Dal-Pizzol, G. Gosmann, D. Guillaume, J. C. Moreira, and E. P. Schenkel. 2003. Antioxidant activity of Baccharis articulata extracts: isolation of a new compound with antioxidant activity. Free Radic. Res. 37, 555-559. https://doi.org/10.1080/1071576031000076259
  13. Drummond, G. S. and A. Kappas. 1979. Manganese and zinc blockade of enzyme induction: studies with microsomal heme oxygenase. Proc. Natl. Acad. Sci. USA 76, 5331-5335. https://doi.org/10.1073/pnas.76.10.5331
  14. Gao, L., R. Mejias, M. Echevarria, and J. Lopez-Barneo. 2004. Induction of the glucose-6-phosphate dehydrogenase gene expression by chronic hypoxia in PC12 cells. FEBS Lett. 569, 256-260. https://doi.org/10.1016/j.febslet.2004.06.004
  15. Gebska, A., R. Olszanecki, and R. Korbut. 2005. Endotoxaemia in rats: role of leukocyte sequestration in rapid pulmonary nitric oxide synthase-2 expression. J. Physiol. Pharmacol. 56, 299-311.
  16. Gower, J. D. 1988. A role for dietary lipids and antioxidants in the activation of carcinogens. Free Radic. Biol. Med. 5, 95-111. https://doi.org/10.1016/0891-5849(88)90035-4
  17. Hadjigogos, K. 2003. The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Med. 45, 7-13.
  18. Halliwell, B. and J. M. Gutteridge. 1985. The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 8, 89-193. https://doi.org/10.1016/0098-2997(85)90001-9
  19. Hong, N. D., Y. S. Rho, N. J. Kim, and J. S. Kim. 1990. 2002. A study on efficacy of Ulmi cortex. Kor. J. Pharmacogn. 21, 217-222.
  20. Huh, J. 2006. Dae-Yeok Donguibogam. pp. 2217, Donguibogam press, Gyeongnam, Korea.
  21. Jin, U. H., S. J. Suh, S. D. Park, K. S. Kim, D. Y. Kwon, and C. H. Kim. 2008. Inhibition of mouse osteoblast proliferation and prostaglandin E2 synthesis by Ulmus davidiana Planch (Ulmaceae). Food Chem. Toxicol. 46, 2135-2142. https://doi.org/10.1016/j.fct.2008.02.011
  22. Kakkar, P. and B. K. Singh. 2007. Mitochondria: a hub of redox activities and cellular distress control. Mol. Cell. Biochem. 305, 235-253. https://doi.org/10.1007/s11010-007-9520-8
  23. Kalinovskii, A. I. and N. I. Chetyrina. 1980. 13C NMR spectra of acetylated hederagenin glycosides. Chem. Nat. Compd+. 16, 269-271. https://doi.org/10.1007/BF00567289
  24. Kim, K. S., S. D. Lee, K. H. Kim, S. Y. Kil, K. H. Chung, and C. H. Kim. 2005. Suppressive effects of a water extract of Ulmus davidiana Planch (Ulmaceae) on collagen-induced arthritis in mice. J. Ethnopharmacol. 97, 65-71. https://doi.org/10.1016/j.jep.2004.10.011
  25. Kleinert, H., A. Pautz, K. Linker, and P. M. Schwarz. 2004. Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 500, 255-266. https://doi.org/10.1016/j.ejphar.2004.07.030
  26. Ko, J. H. and K. T. Lim. 2006. Glycoprotein isolated from Ulmus davidiana NAKAI protects against carbon tetrachloride-induced liver injury in the mouse. J. Pharmacol. Sci. 101, 205-213. https://doi.org/10.1254/jphs.FP0051053
  27. Krieger-Liszkay, A. and A. Trebst. 2006. Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. J. Exp. Bot. 57, 1677-1684. https://doi.org/10.1093/jxb/erl002
  28. Lee, C. 1990. Pon-Cho. Pyeon-Joo Uihak-Ipmun. pp. 194, Dae Sung press, Seoul, Korea.
  29. Lee, S. J., S. J. Heo, P. S. Oh, K. Lim, and K. T. Lim. 2004. Glycoprotein isolated from Ulmus davidiana Nakai inhibits TPA-induced apoptosis through nuclear factor-kappa B in NIH/3T3 cells. Toxicol. Lett. 146, 159-174. https://doi.org/10.1016/j.toxlet.2003.10.005
  30. Lee, Y. Y., D. S. Jang, J. L. Jin, and H. S. Yun-Choi. 2005. Anti-platelet aggregating and anti-oxidative activities of 11-O-(4'-O-methylgalloyl)-bergenin, a new compound isolated from Crassula cv. 'Himaturi'. Planta Med. 71, 776-777. https://doi.org/10.1055/s-2005-864189
  31. Lin, J. H., P. Villalon, P. Martasek, and N. G. Abraham. 1990. Regulation of heme oxygenase gene expression by cobalt in rat liver and kidney. Eur. J. Biochem. 192, 577-582. https://doi.org/10.1111/j.1432-1033.1990.tb19263.x
  32. Mai, T. T., N. N. Thu, P. G. Tien, and N. Van Chuyen. 2007. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J. Nutr. Sci. Vitaminol. 53, 267-276. https://doi.org/10.3177/jnsv.53.267
  33. Malinski, T., Z. Taha, S. Grunfeld, S. Patton, M. Kapturczak, and P. Tomboulian. 1993. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem. Biophys. Res. Commun. 193, 1076-1082. https://doi.org/10.1006/bbrc.1993.1735
  34. Mates, J. M. and F. Sanchez-Jimenez. 1999. Antioxidant enzymes and their implications in pathophysiologic processes. Front. Biosci. 4, 339-349. https://doi.org/10.2741/Mates
  35. Mostafa, M., N. Nahar, M. Mosihuzzaman, T. Makhmoor, M. I. Choudhary, and A. U. Rahman. 2007. Free radical scavenging phenylethanoid glycosides from Leucas indica Linn. Nat. Prod. Res. 21, 354-361. https://doi.org/10.1080/14786410701194401
  36. Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  37. Palmour, R. M. and H. E. Sutton. 1971. Vertebrae transferrins. Molecular weights, chemical compositions, and iron-binding studies. Biochemistry 10, 4026-4032. https://doi.org/10.1021/bi00798a003
  38. Pardee, A. B. 1989. G1 events and regulation of cell proliferation. Science 246, 603-608. https://doi.org/10.1126/science.2683075
  39. Radi, R., J. S. Beckman, K. M. Bush, and B. A. Freeman. 1991. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244-4250.
  40. Ray, G. and S. A. Husain. 2002. Oxidants, antioxidants and carcinogenesis. Indian J. Exp. Biol. 40, 1213-1232.
  41. Rikans, L. E. and K. R. Hornbrook. 1997. Lipid peroxidation, antioxidant protection and aging. Biochim. Biophys. Acta 362, 116-127.
  42. Riley, P. A. 1994. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27-33. https://doi.org/10.1080/09553009414550041
  43. Roskams, A. J. and J. R. Connor. 1994. Iron, transferrin, and ferritin in the rat brain during development and aging. J. Neurochem. 63, 709-716. https://doi.org/10.1046/j.1471-4159.1994.63020709.x
  44. Sen, C. K. 2000. Cellular thiols and redox-regulated signal transduction. Curr. Top. Cell Regul. 36, 1-30.
  45. Son, B. H., J. H. Park, and O. P. Zee. 1989. Catechin glycoside from Ulmus davidiana. Arch. Pharmacol. Res. 12, 219-222. https://doi.org/10.1007/BF02855558
  46. Son, Y. O., K. Y. Lee, K. C. Choi, Y. Chung, J. G. Kim, Y. M. Jeon, Y. S. Jang, and J. C. Lee. 2004. Inhibitory effects of glycoprotein-120 (G-120) from Ulmus davidiana Nakai on cell growth and activation of matrix metalloproteinases. Mol. Cells 18, 163-170.
  47. Sumbayev, V. V. and I. M. Yasinska. 2002. The effect of $CoCl_2$ on xanthine oxidase, nitric oxide synthase, and protein kinase C activity as well as cytochrome P450 1A1, 1A2 and 1B1 quantities in rat liver. Ukr. Biokhim. Zh. 74, 117-120.
  48. Theil, E. C. 1987. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56, 289-315. https://doi.org/10.1146/annurev.bi.56.070187.001445
  49. Xiong, Y., T. Connolly, B. Futcher, and D. Beach. 1991. Human D-type cyclin. Cell 65, 691-699. https://doi.org/10.1016/0092-8674(91)90100-D
  50. Zweier, J. L., R. Broderick, P. Kuppusamy, S. Thompson-Gorman, and G. A. Lutty. 1994. Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J. Biol. Chem. 269, 24156-24162.

피인용 문헌

  1. Anti-adipogenic Activity of Cortex ulmi pumilae Extract in 3T3-L1 Preadipocytes vol.24, pp.2, 2014, https://doi.org/10.5352/JLS.2014.24.2.137
  2. Effect of Extraction Conditions on in vitro Antioxidant Activities of Root Bark Extract from Ulmus pumila L. vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1172