References
- Butler, M. S. 2004. The role of natural product chemistry on drug discovery. J. Nat. Prod. 67, 2131-2153.
- Butler, M. S. 2005. Natural products to drugs: natural product derived compounds on clinical trials. Nat. Prod. Rep. 22, 162-195. https://doi.org/10.1039/b402985m
- Butler, M. S. and A. D. Buss. 2006. Natural products-the future scaffolds for novel abtibiotics? Biochem. Pharmacol. 71, 919-929. https://doi.org/10.1016/j.bcp.2005.10.012
- Chomnawang, W. T., S. Surassmo, V. S. Nukoolkarn, and W. Gritasnapan. 2005. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol. 101, 330-333. https://doi.org/10.1016/j.jep.2005.04.038
- Favre, B., B. Hofbauer, K. S. Hildering, and N. S. Ryder. 2003. Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J. Clin. Microbiol. 41, 4817-4819. https://doi.org/10.1128/JCM.41.10.4817-4819.2003
- Fukuda, T., A. Matsumoto, Y. Takahashi, H. Tomoda, and S. Omura 2005. Phenatic acids A and B, new potentiators of antifungal miconazole activity produced by Streptomyces sp. K03-0132. J. Antibiot. 58, 252-259. https://doi.org/10.1038/ja.2005.29
- Joo, W. H., S. J. Han, Y. L. Choi, and Y. K. Jeong. 2004. Antifungal compound produced by Bacillus sp. TMB 912. J. Life Sci. 14, 193-197. https://doi.org/10.5352/JLS.2004.14.1.193
- Kane, J. and R. C. Summerbel. 1999. Trychophyton, Microsporm, Epidermophyton, and agents of superficial mycosis, In Murray, P. R. E. J. Baron, M. A. Pfaller, F. C. Tenover, and R. H. Yolken, (eds.), pp. 1275-1294, Manual of clinical microbiology. 7th eds., Washington D.C. ASM Press, USA.
- Kim, P. I. and K. C. Chung. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET 0908. FEMS Microbiol. Lett. 234, 177-183. https://doi.org/10.1111/j.1574-6968.2004.tb09530.x
- Koehn, F. E. and G. T. Carter. 2005. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4, 206-220. https://doi.org/10.1038/nrd1657
- Konishi, M., M. Nishio, K, Saitoh, T. Miyaki, T. Oki, and H. Kawaguchi. 1989. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J. Antibiotics 42, 1749-1755. https://doi.org/10.7164/antibiotics.42.1749
- Kumar, A., P. Saini, and J. N. Shrivastava. 2009. Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Indian J. Exp. Biol. 47, 57-62.
- Larone, D. H. 1995. Medically important fungi. 3rd eds., pp. 9, AMP Press, Washington, D.C. USA.
- Lee, D. H., S. R, Park, T. C. Kwon, and H. K. Jung. 1991. A water-soluble antifungal antibiotic from Streptomyces sp. LAM-593. J. Kor. Agric. Chem. Soc. 34, 180-186.
- Lee, H. J., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, H. Hwangbo, J. Y. Cho, Y. C. Kim, and K. Y. Kim. 2005. Isolation and identification of low milecuar weight compounds produced by Bacillus subtilis HJ927 and their biocontrol effect on the late blight of pepper (Capsicum annuum L.). J. Soil Sci. Fert. 38, 25-31.
- Lee, N. W., C. S. Kim, J. H. Do, I. C. Jung, H. W. Lee, and D. H. Yi. 1998. Isolation and identification of Bacillus sp. LAM 97-44 producing antifungal antibiotics. Agric. Chem. Biotech. 41, 208-212.
- Lee, S. G. 2003. Antimicrobial effect of Bamboo (Phyllosrachys bambusoides) essential oil on Trichophyton and Pityrosporum. J. Food Hyg. Safety 18, 113-117.
- National Committee for Clinical Laboratory Standards. 2004. Methods for antimicrobial susceptibility testing of anaerobic acteria: Approved Standard. 6th eds., Vol. 24, NCCLS Document M11-A6. Pennsylvania, USA.
- National Committee for Clinical Laboratory Standards. 2002. Reference methods for broth dilution antifungal susceptibility testing of yeasts: Approved Standard. 2nd eds., Vol. 22, NCCLS Document M27-A2. Pennsylvania. USA.
- Ruhnke, M., A. Schmidt-Westhausen, E. Engelmann, and M. Trautmann. 1996. Comparative evaluation of three antifungal susceptibility test methods for Candida albicans isolates and correlation with response to fluconazole therapy. J. Clin. Microbiol. 34, 3208-3211.
- Saito, N. and M. Nei. 1987. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 79, 426-434.
- Shadomy, S., H. J. Shadomy, and G. E. Wagmer. 1977. Antifungal compounds, In Siegel, M. R. and D. S. HughI (eds.), pp. 437, Dekker, New York, USA.
- Shibazaki, M., T. sugawara, Y. Shimizu, H. Yamaguchi, and K. Suzuki. 1996. YM-47522, a novel antifungal antibiotic produced by Bacillus sp. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. 49, 340-344. https://doi.org/10.7164/antibiotics.49.340
- Tawara, S., S. Matsumoto, T. Hirose, Y. Matsumoto, S. Nakamoto, and M. Mitsuno. 1989. In vitro antifungal synergism between pyrrolnitrin and clotrimazole. Med. Mycol. 30, 202-210. https://doi.org/10.3314/jjmm1960.30.202
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuclic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Tortorano, A. M., M. A. Viviani, F. Barchiesi, D. Arzeni, A. L. Rigoni, and M. Cogliat. 1998. Comparison of three methods for testing azole susceptibilities of Candida albicans strains isolated sequentially from oral cavities of AIDS patients. J. Clin. Microbiol. 36, 1578-1583.
- Yu, G. Y., J. B. Sinclair, G. L. Hartman, and B. L. Bertagnolli. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34, 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
-
Vikmon, M., A. Stadler-Szoke, and J. Szejtli. 1985. Solubilization of Amphotericin B with
$\gamma$ -cyclodextrin. J. Antibiotics. 38, 1822-1824. https://doi.org/10.7164/antibiotics.38.1822 - Weitzman, I. and R. C. Summerbel. 1995. The dermatophytes. Clin. Microbiol. Rev. 8, 240-159.
- Whipps, J. M. 1987. Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytol. 107, 127-142. https://doi.org/10.1111/j.1469-8137.1987.tb04887.x
- Wong, J. H., J. Hao, Z. Cao, M. Qiao, H. Xu, Y. Bai, and T. B. Ng. 2008. An antifungal protein from Bacillus amyloliquefaciens. J. Appl. Microbiol. 105, 1888-1898. https://doi.org/10.1111/j.1365-2672.2008.03917.x
- Zhang, B., C. Xie, and X. Yang. 2008. A novel small antifungal peptide from Bacillus strain B-TL2 isolated from tobacco stems. Peptides 29, 350-355. https://doi.org/10.1016/j.peptides.2007.11.024
- Zhao, Z., Q. K. Wang, K. Brian, C. Liu, and Y. Gu. 2010. Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour. Technol. 101, 292-297. https://doi.org/10.1016/j.biortech.2009.07.071
Cited by
- Characterization of an Indigenous Antimicrobial Substance-producing Paenibacillus sp. BCNU 5011 vol.26, pp.2, 2011, https://doi.org/10.7841/ksbbj.2011.26.2.100
- Determination of Mass Culture Method of Marine-derived Micro Organism, Bacillus sp. 2-4 (KCCMI 11107P) with Antimicrobial Acitivity vol.30, pp.1, 2018, https://doi.org/10.13000/JFMSE.2018.02.30.1.123