DOI QR코드

DOI QR Code

Neuroprotective Effects of Methanolic Extracts from Peanut Sprouts

땅콩나물 추출물의 신경세포 보호 효과

  • Kim, Hyun-Jung (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Kang, Jum-Soon (Department of Horticultural Bioscience, Pusan National University) ;
  • Park, Hae-Ryong (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Hwang, Yong-Il (Department of Food Science and Biotechnology, Kyungnam University)
  • 김현정 (경남대학교 식품생명학과) ;
  • 강점순 (부산대학교 원예생명과학과) ;
  • 박해룡 (경남대학교 식품생명학과) ;
  • 황용일 (경남대학교 식품생명학과)
  • Received : 2009.12.28
  • Accepted : 2010.02.01
  • Published : 2010.02.28

Abstract

The neuroprotective effects of extracts from various parts of peanut sprouts on glutamate-induced neurotoxicity in N18-RE-105 cells were investigated. This study was performed to evaluate the neuroprotective activity of methanolic extracts from the whole (WME), heads (HME), and stems (SME) of peanut sprouts. The neuroprotective effects of these extracts were measured by MTT reduction assay, LDH release assay, phase-contrast microscopy, and flow cytometric analysis on the N18-RE-105 cells. Among these extracts, the HME showed the greatest neuroprotective effects, and was further fractionated with hexane, diethyl ether, ethyl acetate, and water, according to degree of polarity. Out of the fractionated extracts, the diethyl ether layer showed the highest activity on glutamate-induced cytotoxicity in N18-RE-105 cells. The sub-G1 DNA contents of the glutamate-induced severely apoptotic N18-RE-105s were measured by flow cytometric analysis to confirm the HME's anti-apoptotic activity. Interestingly, after incubation with 100 mg/ml of the HME, the proportion of sub-G1 cells of the glutamate-stressed N18-RE-105s had been greatly reduced, from 58.5% to 9.1%. These results imply that HME may have strong potential as a chemotherapeutic agent against neuronal diseases.

본 연구는 땅콩나물 추출물이 glutamate가 유도하는 세포독성으로부터 신경세포를 보호하는 효과를 확인하였다. 땅콩나물을 부위별로 전체, 머리, 줄기 부분으로 나누어 methanol로 처리하여 얻어진 각각의 추출물 WME, HME 그리고 SME를 이용하여 glutamate에 의하여 유도된 세포독성에 대한 신경세포보호효과를 관찰하였다. 기지의 신경세포 N18-RE-105 세포주를 이용하여 MTT reduction assay, LDH release assay, 형태학적인 변화 및 apoptosis를 관찰한 결과로부터 HME에서 효율적인 신경세포보호효과를 보였다. 다음으로 HME를 이용하여 hexane, diethyl ether, ethyl acetate, water 층으로 분획하여 신경세포 보호 효과를 확인한 결과, diethyl ether 층에서 가장 높은 활성을 확인할 수 있었다. 그리고 HME의 apoptosis 억제 효과를 확인하기 위하여 flow cytometric analysis를 실시한 결과에서 glutamate 만을 처리하였을 경우 sub-G1기 세포가 58.5%의 확인되었으나 HME를 100 mg/ml 동시 처리하였을 때에는 sub-G1 세포가 9.1%로 감소하여 높은 apoptosis 억제 효과를 확인할 수 있었다. 이상의 결과로부터 땅콩나물 머리 부분 methanol 추출물에는 glutamate에 의한 세포독성으로부터 신경세포를 보호하는 효과가 있다는 것을 알 수 있었다.

Keywords

References

  1. Cho, C. H., S. K. Kim, G. Yoo, M. H. Son, K. Park, B. L. Lim, D. C. Kim, and H. J. Chae. 2008. Resveratrol extraction from grape fruit stem and its antioxidant activity. J. Korean Soc. Appl. Bil. Chem. 51, 11-16.
  2. Choi, B. H., E. M. Hur, J. H. Lee, D. J. Jun, and K. T. Kim. 2005. Protein kinase Cd-mediated proteasomal degradation of MAP kinase phophatase-1 contributes to glutamate-induced neuronal cell death. J. Cell. Sci. 119, 1329-1340. https://doi.org/10.1242/jcs.02837
  3. Emerit, J., M. Edeas, and F. Bricaire. 2004. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 58, 39-46. https://doi.org/10.1016/j.biopha.2003.11.004
  4. Federico, H., M. Vanesa, G. S. Guillermo, R. B. Jezabel, A. Isaac, and R. Carmen. 2007. Melatonin prevents glutamate-induced oxytosis in the HT22 mouse hippocampal cell line through an antioxidant effect specifically targeting mitochondria. J. Neurochem. 100, 736-746. https://doi.org/10.1111/j.1471-4159.2006.04228.x
  5. Ha, J. S., C. S. Lee, J. S. Maeng, K. S. Kwon, and S. S. Park. 2009. Chronic glutamate toxicity in mouse cortical neuron culture. Brain Res. 1273, 138-143. https://doi.org/10.1016/j.brainres.2009.03.050
  6. Ha, J. S. and S. S. Park. 2006. Glutamate-induced oxidative stress, but not cell death, is largely dependent upon extracellular calcium in mouse neuronal HT22 cells. Neurosci. lett. 393, 165-169. https://doi.org/10.1016/j.neulet.2005.09.056
  7. Hwang, Y. I., I. C. Shin, Y. S. Song, M. J. Seung, H. J. Park, Y. M. Lee, C. B. Park, M. K. Lee, K. W. Oh, Y. Y. Shim, and J. T. Hong. 2002. Intracellular calcium concentration in the glutamate-induced cytotoxicity in PC12 cell. J. Toxicol. Pub. Health 18, 355-362.
  8. Jeon, H. J., S. W. Park, I. Lee, and B. S. Mun. 2004. Effects of Gwibitang on glutamate-induced death in rat neonatal astrocytes. J. Korean Oriental Med. 25, 184-193.
  9. Jeong, G. S., D. S. Lee, T. O. Kwon, H. S. Lee, R. B. An, and Y. C. Kim. 2009. Cytoprotective constituents of the heartwood of Caesalpinia sappan on glutamate-induced oxidative damage in HT22 cells. Biol. Pharm. Bull. 32, 945-949. https://doi.org/10.1248/bpb.32.945
  10. Jeong, E. J., S. H. Sung, J. Kim, S. H. Kim, and Y. C. Kim. 2008. Rhus verniciflua stokes attenuates glutamate-induced neurotoxicity in primary cultures of rat cortical cells. Nat. Prod. Sci. 14, 156-160.
  11. Kadomura, K., S. Maruse, S. Sugihara, K. Yamaguchi, and T. Oda. 2007. Production of reactive oxygen species (ROS) by various marine fish species during the larval stage. Biosci. Biotechmol. Biochem. 71, 2029-2033. https://doi.org/10.1271/bbb.70217
  12. Kim, B. M., Y. J. Choi, Y. Han, Y. S. Yun, and S. H. Hong. 2009. N,N-dimethyl phytosphingosine induced caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells. Toxicol. Appl. Pharm. 239, 87-97. https://doi.org/10.1016/j.taap.2009.05.020
  13. Kim, M. H., S. Uehara, A. Muroyama, B. Hille, Y. Moriyama, and D. S. Koh. 2008. Glutamate transportermediated glutamate secretion in the mammalian pineal gland. J. Neurosci. 28, 10852-10863. https://doi.org/10.1523/JNEUROSCI.0894-08.2008
  14. Kim, S. H., D. K. Shin, J. Y. Choe, J. Lee, E. J. Suh, and H. S. Suh. 1999. Quantitation of the Early apoptotic cells using flow cytometry. Korean J. Chlin. Pathol. 19, 108-113.
  15. Kim, W. J., J. Y. Park, Y. K. Park, H. S. Chung, K. C. Lee, and H. K. Lee. 1997. Effects of calcium, Mugnesium, and calcium chelating agent on recovery from hyproxia in hippocampal tissue slices. J. Korean Neurosurg. Soc. 26, 491-498.
  16. Lim, C. S., D. Q. Jin, J. Y. Sung, J. H. Lee, H. G. Choi, I. Ha, and J. S. Han. 2006. Antioxidant and anti-inflammatory activities of the methanolic extract of Neorhodomela aculeate in hippocampal and microglial cells. Biol. Pharm. Bull. 29, 1212-1216. https://doi.org/10.1248/bpb.29.1212
  17. Nikolova, S., Y. S. Lee, Y. S. Lee, and J. A. Kim. 2005. Racl-NADPH oxidase-regulated generation of reactive oxygen species mediates glutamate-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radical Res. 39, 1295-1304. https://doi.org/10.1080/10715760500176866
  18. Marambaud, P., H. Zhao, and P. Davies. 2005. Resveratrol promotes clearance of Alzheimer's disease amyloid-$\beta$ peptides. J. Biol. Chem. 280, 37377-37382. https://doi.org/10.1074/jbc.M508246200
  19. Milatovic, D., S. Zaja-Milatovic, R. C. Gupta, Y. Yu, and M. Aschmer. 2009. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol. Appl. Pharm. 240, 219-225. https://doi.org/10.1016/j.taap.2009.07.004
  20. Murphy, T. H., M. Miyamoto, A. Sastre, R. L. Schnaar, and T. Coyle. 1989. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547-1558. https://doi.org/10.1016/0896-6273(89)90043-3
  21. Penugonda, S., S. Mare, P. Lutz, W. A. Banks, and N. Ercal. 2006. Potentiation of lead-induced cell death in PC12 cells by glutamate: Protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant. Toxicol. Appl. Pharm. 216, 197-205. https://doi.org/10.1016/j.taap.2006.05.002
  22. Parfenova, H., S. Basuroy, S. Bhattacharya, D. Tcheranova, Y. Qu, R. F. Regan, and C. W. Leffler. 2006. Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. Am. J. Physiol. Cell Physiol. 290, 1399-1410. https://doi.org/10.1152/ajpcell.00386.2005
  23. Sagara, Y., R. Dargusch, D. Chambers, J. Davis, D. Schubert, and P. Mater. 1998. Cellular mechanisms of resistance to chronic oxidative stress. Free Radic. Biol. Med. 24, 1375-1389. https://doi.org/10.1016/S0891-5849(97)00457-7
  24. Shin, A. Y., H. Erb, X. Sun, S. Toda, P. W. Kalivas, and T. H. Murphy. 2006. Cystine/glutamate exchange modulated glutathione supply for neuroprotection from oxidative stress and cell proliferation. J. Neurosci. 26, 10514-10523. https://doi.org/10.1523/JNEUROSCI.3178-06.2006
  25. Tan, S., Y. Sagara, Y. Liu, P. Maher, and D. Schubert. 1998. The regulation of reactive oxygen species production during programmed cell death. J. Cell Biol. 141, 1423-1432. https://doi.org/10.1083/jcb.141.6.1423
  26. Wang, F., F. Gao, M. Lan, H. Yuan, Y. Huang, and J. Liu. 2009. Oxidative stress contributes to silica nanoparticleinduced cytotoxicity in human embryonic kidney cells. Toxicol. In Vitro. 22, 808-815.
  27. Yoon, M. Y., J. Y. Kim, J. H. Hwang, M. R. Cha, K. J. Jo, and H. R. Park. 2007. Protective effect of methanolic extracts from Dendrobium nobile Lindl. on $H_{2}O_{2}$-induced neurotoxicity in PC12 cells. J. Korean Soc. Appl. Chem. 50, 63-67.
  28. Yoon, M. Y., H. J. Lee, B. B. Lee, S. M. Lee, J. Y. Kim, Y. Kim, E. Park, and H. R. Rark. 2007. Protective effect of schizonepeta tenuifolia briquet extracts on oxidative DNA damage in human leucocytes and on hydrogen peroxide-induced cytotoxicity in PC12 cells. Food Sci. Biotechnol. 16, 858-862.
  29. Yoshimune, K., Y. Shirakihara, M. Wakayama, and I. Yumoto. 2009. Crystal structure of salt-tolerant glutaminase from Micrococcus luteus K-3 in the presence and absence of its product L-glutamate and its activator tris. FEBS J. 277, 738-748. https://doi.org/10.1111/j.1742-4658.2009.07523.x

Cited by

  1. Quality Characteristics and Antioxidant Effects of Peanut Sprout Soybean Yogurt vol.20, pp.2, 2013, https://doi.org/10.11002/kjfp.2013.20.2.199
  2. Peanut sprouts extract (Arachis hypogaeaL.) has anti-obesity effects by controlling the protein expressions of PPARγ and adiponectin of adipose tissue in rats fed high-fat diet vol.8, pp.2, 2014, https://doi.org/10.4162/nrp.2014.8.2.158
  3. Ethanol Extract of Peanut Sprout Exhibits a Potent Anti-Inflammatory Activity in Both an Oxazolone-Induced Contact Dermatitis Mouse Model and Compound 48/80-Treated HaCaT Cells vol.27, pp.2, 2015, https://doi.org/10.5021/ad.2015.27.2.142
  4. Bioactivity analysis of Resveratrol from peanut sprouts using On-line screening HPLC-ABTS vol.14, pp.8, 2013, https://doi.org/10.5762/KAIS.2013.14.8.4100
  5. The supplementation effects of peanut sprout on reduction of abdominal fat and health indices in overweight and obese women vol.9, pp.3, 2015, https://doi.org/10.4162/nrp.2015.9.3.249
  6. Ethanol Extract of Peanut Sprout Induces Nrf2 Activation and Expression of Antioxidant and Detoxifying Enzymes in Human Dermal Fibroblasts: Implication for its Protection Against UVB-irradiated Oxidative Stress vol.89, pp.2, 2013, https://doi.org/10.1111/j.1751-1097.2012.01244.x