DOI QR코드

DOI QR Code

인간 대장암 세포주에서 capsaicin 처리에 의한 차별적인 유전자 발현의 p53 의존성 분석

Analysis of p53-Dependency of Differentially Expressed Genes by Capsaicin in Human Colorectal Cancer Cell

  • 김효은 (안동대학교 자연과학대학 생명과학과) ;
  • 장민정 (안동대학교 자연과학대학 생명과학과) ;
  • 임승현 (안동대학교 자연과학대학 생명과학과) ;
  • 김효림 (안동대학교 자연과학대학 생명과학과) ;
  • 김순영 (안동대학교 자연과학대학 생명과학과) ;
  • 이건주 (안동대학교 자연과학대학 생명과학과) ;
  • 김종식 (안동대학교 자연과학대학 생명과학과)
  • Kim, Hyo-Eun (Department of Biological Sciences, Andong National University) ;
  • Jang, Min-Jeong (Department of Biological Sciences, Andong National University) ;
  • Lim, Seung-Hyun (Department of Biological Sciences, Andong National University) ;
  • Kim, Hyo-Rim (Department of Biological Sciences, Andong National University) ;
  • Kim, Soon-Young (Department of Biological Sciences, Andong National University) ;
  • Lee, Gun-Joo (Department of Biological Sciences, Andong National University) ;
  • Kim, Jong-Sik (Department of Biological Sciences, Andong National University)
  • 투고 : 2009.11.16
  • 심사 : 2009.11.30
  • 발행 : 2010.02.28

초록

본 연구에서는 대장암 세포주 모델에서 파이토케미칼 capsaicin에 의한 항 생장 활성과 유전체 수준에서의 유전자 발현 변화를 연구하였다. 그 결과, 처리한 capsaicin 농도 의존적으로 세포 생존율이 감소함을 확인하였고, capsaicin은 다양한 유전자의 발현 변화를 유도하였다. DNA microarray 실험결과 $100\;{\mu}M$ capsaicin의 처리에 의해 2배 이상 증가되는 유전자 103개가 확인된 반면, 2배 이상 발현이 감소되는 유전자 153개가 확인되었다. 발현이 증가되는 유전자 중 4개(NAG-1, DDIT3, GADD45A 그리고 PCK2)를 선택하여 RT-PCR을 수행한 결과, DNA micorarray 실험과 일치함을 확인하였다. 또한 $100\;{\mu}M$ capsaicin의 처리에 의해 암 억제유전자인 p53의 발현이 증가됨을 RT-PCR과 real-time PCR 방법으로 확인하였다. 게다가, NAG-1, DDIT3 그리고 GADD45A 유전자는 p53의 존재에 관계없이 발현이 증가되는 반면, PCK2 유전자는 반드시 p53에 의해 발현이 유도됨을 확인할 수 있었다. 이러한 연구는 대장암 세포주에서 capsaicin에 의한 항암 기전을 이해하는데 도움을 줄 것으로 기대된다.

In the present study, we investigated anti-proliferative activities of capsaicin and gene expression changes in response to capsaicin treatment in human colorectal HCT116 cells. The results showed that capsaicin decreased cell viabilities in a dose dependent manner and induced global gene expression changes. We found that 103 genes were up-regulated more than twofold, whereas 153 genes were down-regulated more than twofold by $100\;{\mu}M$ capsaicin treatment. Among the up-regulated genes, we selected 4 genes (NAG-1, DDIT3, GADD45A and PCK2) and performed RT-PCR to confirm the microarray data. We found that $100\;{\mu}M$ of capsaicin increased tumor suppressor p53 gene expression. In addition, the results showed that NAG-1, DDIT3 and GADD45A expressions were not dependent on p53 presence, whereas PCK2 expression. The results of this study may help to increase our understandings of the molecular mechanism of anti-proliferative activity mediated by capsaicin in human colorectal cancer cells.

키워드

참고문헌

  1. Baek, S. J., K. S. Kim, J. B. Nixon, L. C. Wilson, and T. E. Eling. 2001. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol. 59, 901-908.
  2. Baek, S. J., L. C. Wilson, and T. E. Eling. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23, 425-434. https://doi.org/10.1093/carcin/23.3.425
  3. Bates, S. and K. H. Vousden. 1996. p53 in signaling checkpoint arrest or apoptosis. Curr. Opin. Genet. Dev. 6, 12-18. https://doi.org/10.1016/S0959-437X(96)90004-0
  4. Biro, T., G. Acs, P. Acs, S. Modarres, and P. M. Blumberg. 1997. Recent advances in understanding of vanilloid receptors: a therapeutic target for treatment of pain and inflammation in skin. J. Investig. Dermatol. Symp. Proc. 2, 56-60. https://doi.org/10.1038/jidsymp.1997.12
  5. Chou, C. C., Y. C. Wu, Y. F. Wang, M. J. Chou, S. J. Kuo, and D. R. Chen. 2009. Capsaicin-induced apoptosis in human breast cancer MCF-7 cells through caspase-independent pathway. Oncol. Rep. 21, 665-671.
  6. Cordell, G. A. and O. E. Araujo. 1993. Capsaicin: identification, nomenclature, and pharmacotherapy. Ann. Pharmacother. 27, 330-336.
  7. Ding, H., W. Duan, W. G. Zhu, R. Ju, K. Srinivasan, G. A. Otterson, and M. A. Villalona-Calero. 2003. p21 response to DNA damage induced by genistein and etoposide in human lung cancer cells. Biochem. Biophys. Res. Commun. 305, 950-956. https://doi.org/10.1016/S0006-291X(03)00873-8
  8. el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825. https://doi.org/10.1016/0092-8674(93)90500-P
  9. Gupta, S., N. Ahmad, A. L. Nieminen, and H. Mukhtar. 2000. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgeninsensitive human prostate carcinoma cells. Toxicol. Appl. Pharmacol. 164, 82-90. https://doi.org/10.1006/taap.1999.8885
  10. Hail, N. Jr and R. Lotan. 2002. Examining the role of mitochondrial respiration in vanilloid-induced apoptosis. J. Natl. Cancer Inst. 94, 1281-1292. https://doi.org/10.1093/jnci/94.17.1281
  11. Huang, C., W. Y. Ma, A. Goranson, and Z. Dong. 1999. Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis 20, 237-242. https://doi.org/10.1093/carcin/20.2.237
  12. Joo, J. J. 1999. Body-fat suppressive effects of capsaicin through $\beta$-adrenergic stimulation in rats fed a high-fat diet. The Korean Journal of Nutrition 32, 533-539.
  13. Kim, C. S., W. H. Pack, J. Y. Park, J. H. Kang, M. O. Kim, T. Kawada, H. Yoo, I. S. Han, and R. Yu. 2004. Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. J. Med. Food 7, 267-273. https://doi.org/10.1089/jmf.2004.7.267
  14. Kim, J. S., S. J. Baek, T. Sali, and T. E. Eling. 2005. The conventional nonsteroidal anti-inflammatory drug sulindac sulfide arrests ovarian cancer cell growth via the expression of NAG-1/MIC-1/GDF-15. Mol. Cancer Ther. 4, 487-493.
  15. Lee, J. S., J. S. Chang, J. Y. Lee, and J. A. Kim. 2004. Capsaicin-induced apoptosis and reduced released of reactive oxygen species in MBT-2 murine bladder tumor cells. Arch. Pharm. Res. 27, 1147-1153. https://doi.org/10.1007/BF02975121
  16. Lee, S. H., J. S. Kim, K. Yamaguchi, T. E. Eling, and S. J. Baek. 2005. Indole-3-carbinol and 3,3'-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem. Biophys. Res. Commun. 328, 63-69. https://doi.org/10.1016/j.bbrc.2004.12.138
  17. Lee, Y. S., Y. S. Kang, J. S. Lee, S. Nicolova, and J. A. Kim. 2004. Involvement of NADPH oxidase-mediated generation of reactive oxygen species in the apoptotic cell death by capsaicin in HepG2 human hepatoma cells. Free Radic. Res. 38, 405-412. https://doi.org/10.1080/10715760410001665262
  18. Levine, A. J. p53, the cellular gatekeeper for growth and division. 1997. Cell 88, 323-331. https://doi.org/10.1016/S0092-8674(00)81871-1
  19. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
  20. Malagarie-Cazenave, S, N. Olea-Herrero, D. Vara, and I. Diaz-Laviada. 2009. Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells. FEBS Lett. 583, 141-147. https://doi.org/10.1016/j.febslet.2008.11.038
  21. Mori, A., S. Lehmann, J. O'Kelly, T. Kumagai, J. C. Desmond, M. Pervan, W. H. McBride, M. Kizaki, and H. P. Koeffler. 2006. Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res. 66, 3222-3229. https://doi.org/10.1158/0008-5472.CAN-05-0087
  22. Sanchez, A. M., J. Martinez-Botas, S. Malagarie-Cazenave, N. Olea, D. Vara, M. A. Lasuncion, and I. Diaz-Laviada. 2008. Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a mi croarray study. Biochem. Biophys. Res. Commun. 372, 785-791. https://doi.org/10.1016/j.bbrc.2008.05.138
  23. Surh, Y. J., K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keom, K. K. Park, and S. S. Lee. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480, 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  24. Surh, Y. J. and L. R. Ferguson. 2003. Dietary and medicinal antimutagens and anticarciongens: molecular mechanism and chemopreventive potential-highlights of a symposium. Mutat. Res. 523-524, 1-8. https://doi.org/10.1016/S0027-5107(02)00343-3
  25. Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer 3, 768-780. https://doi.org/10.1038/nrc1189
  26. Szallasi, A. and P. M. Blumberg. 1999. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol. Rev. 51, 159-212.
  27. Thomas, K. C., A. S. Sabnis, M. E. Johansen, D. L. Lanza, P. J. Moos, G. S. Yost, and C. A. Reilly. 2007. Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J. Pharmacol. Exp. Ther. 321, 830-838. https://doi.org/10.1124/jpet.107.119412
  28. Vogelstein, B. and K. W. Kinzler. 1992. p53 function and dysfunction. Cell 70, 523-526. https://doi.org/10.1016/0092-8674(92)90421-8
  29. Watabe, M., K. Hishicawa, A. Takyanaqi, N. Shimizu, and T. Nakaki. 2004. Caffeic acid phenethyl ester induces apoptosis by inhibition of NF-kappaB and activation of Fas in human breast cancer MCF-7 cell. J. Biol. Chem. 279, 6017-6026. https://doi.org/10.1074/jbc.M306040200
  30. Wilson, L. C., S. J. Baek, A. Call, and T. E. Eling. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753. https://doi.org/10.1002/ijc.11173

피인용 문헌

  1. Curcumin Inhibits Cell Proliferation of Human Colorectal HCT116 Cells through Up-Regulation of Activating Transcription Factor 3 (ATF3) vol.22, pp.4, 2012, https://doi.org/10.5352/JLS.2012.22.4.492