DOI QR코드

DOI QR Code

배추 alternative oxidase 합성 유전자와 연관된 분자마커 개발

Development of Molecular Markers for Alternative Oxidase Synthesis Genes in Brassica rapa L.

  • 정예솔 (동국대학교-서울 생명과학과) ;
  • 정상민 (동국대학교-서울 생명과학과)
  • Jeong, Ye-Sol (Department of Life Science, Dongguk University-Seoul) ;
  • Chung, Sang-Min (Department of Life Science, Dongguk University-Seoul)
  • 투고 : 2009.11.16
  • 심사 : 2009.11.27
  • 발행 : 2010.02.28

초록

작물의 수량과 품질은 저온 및 고온 스트레스에 영향을 받는 것으로 알려져 있다. 본 연구에서는 배추에서의 스트레스 저항성과 연관된 분자마커를 개발하기 위하여 저온에서의 스트레스 저항성에 영향을 미치는 것으로 알려져 있는 alternative oxidase (AOX) 합성 유전자 관련 분자 마커를 개발하였다. 총 15개의 AOX 합성 유전자와 관련된 Brassica rapa ESTs를 arabidopsis AOX 합성 유전자 염기서열을 이용하여 찾을 수 있었다. 이를 이용하여 고온에서 상대적으로 약한 '지부'품종과 상대적으로 강한 '권심' 사이에서 DNA 염기서열을 조사하여 4개의 ESTs에서 insertion 또는 deletion을 찾았고 PCR로 확인 가능한 4개의 공동우성 마커를 개발하였다. 본 연구에서 개발된 분자마커는 배추 작물에서 환경스트레스 저항성과 유전적 연관성을 확인하는데 유용하게 사용될 수 있다고 기대된다.

The low and high temperature stress might affect the yield and quality of many crop species. Alternative oxidase (AOX) gene is known as factors related to stress resistance in plants. In order to develop molecular markers related to stress resistance in Chinese cabbage, fifteen ESTs sharing sequence similarity to arabidopsis AOX genes were found using Brassica rapa EST database from NCBI. The polymorphic DNA sequences using the ESTs were then screened between Chinese cabbage, 'Chiifu' and 'Kenshin'. We found four ESTs that have either insertion or deletion between the two cultivars. These polymorphic sites were then targeted for development of the four PCR based molecular markers. These molecular markers developed in this study could be useful for a test of their relationship with abiotic stress resistance in Chinese cabbage.

키워드

참고문헌

  1. Abe, F., K. Saito, K. Miura, and K. Toriyama. 2002. A single nucleotide polymorphism in the alternative oxidase gene among rice varieties differing in low temperature tolerance. FEBS Lett. 527, 181-185. https://doi.org/10.1016/S0014-5793(02)03218-0
  2. Ayeh, K. O. 2008. Expressed sequence tags (ESTs) and single nucleotide polymorphism (SNPs): Emerging molocular marker tools for improving agronomic traits in plant biotechnology. Afr. J. Biotechnol. 7, 331-341.
  3. Berhold, D. A. and P. Stenmark. 2003. Membrane-bound diiron carboxylate proteins. Annu. Rev. Plant Biology 54, 497-517. https://doi.org/10.1146/annurev.arplant.54.031902.134915
  4. Daisuke, S., E. Nambara, S. Naito, N. Tsutsumi, A. Hirai, and M. Nakazono. 1997. Charactaerization of the gene family for alternative oxidase from Arabidopsis thaliana. Plant Molecular Biology 35, 585-596. https://doi.org/10.1023/A:1005818507743
  5. Kim, M. J. and J. S. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103, 91-96. https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  6. Kim, Y. S., Z. B. Zheng, and D. H. Shin. 2008. Growth inhibitory effects of kimchi (Korean traditional fermented vegetable product) against Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus. J. Food Prot. 71, 325-332.
  7. Kreps, J. A., Y. Wu, H. S. Chang, T. Zhu, X. Wang, and J. F. Harper. 2002. Transcriptome changes for arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology 130, 2129-2141. https://doi.org/10.1104/pp.008532
  8. Labana, K. S. and M. L. Gupta. 1993. Importance and origin, pp. 1-20, In K. S. Labana, S. S. Banga, and S. K. Banga (eds.), Breeding Oilseed Brassicas, Springer-Verlag Press, Berlin.
  9. Lagerctantz, U. and D. Lydiate. 1996. Comparative genome mapping in brassica. Genetics 144, 1903-1910.
  10. Levadoux, W. L., M. L. Kalmokoff, M. D. Pickard, and J. W. D. GrootWassink. 1987. Pigment removal from canola oil using chlorophyllase. J. Am. Oil Chem. Soc. 64, 139-144. https://doi.org/10.1007/BF02546269
  11. Mahmud, T. M. M., J. G. Atherton, C. J. Wright, M. F. Ramlan, and S. H. Ahmad. 1999. Pak Choi (Brassica rapa ssp. Chinensis L.) quality response to pre-harvest salinity and temperature. J. Sci. Food Agric. 79, 1698-1702. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1698::AID-JSFA421>3.0.CO;2-K
  12. Maxwell, D. P., Y. Wang, and L. Mcintosh. 1999. The alternative oxidase lower mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA 96, 8271-8276. https://doi.org/10.1073/pnas.96.14.8271
  13. McDonald, A. E. and G. C. Vanlerberghe. 2004. Branched mitochondrial electron transport in the animalia: Presence of alternative oxidase in several animal phyla. IUMBM Life 56, 333-341. https://doi.org/10.1080/1521-6540400000876
  14. Nagaharu, U. 1935. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 7, 389-452.
  15. Prasad, M., R. K. Varshney, J. K. Roy, H. S. Balyan, and P. K. Gupta. 2000. The use of microsatellite for detecting DNA polymorphism, genotype identification and genetic diersity in wheat. Theor. Appl. Genet. 100, 584-592.
  16. Sugie, A., N. Naydenov, N. Mizuno, C. Nakamura, and S. Takumi. 2006. Overexpression of wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes Genet. Syst. 81, 349-354. https://doi.org/10.1266/ggs.81.349
  17. Thomashow, M. F. 1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 118, 1-8. https://doi.org/10.1104/pp.118.1.1
  18. Umbach, A. L., F. Fiorani, and J. N. Siedow. 2005. Characterization of transformed arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol. 139, 1806-1820. https://doi.org/10.1104/pp.105.070763
  19. Vanlerberghe, G. C. and L. McIntosh. 1997. Alternative oxidase: From gene to function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 703-734. https://doi.org/10.1146/annurev.arplant.48.1.703