DOI QR코드

DOI QR Code

호염성균 유래 45 kDa 혈전용해효소의 순수분리와 생화학적 특성

Purification and Biochemical Characteristics of a 45 kDa Fibrinolytic Enzyme from a Halophile

  • 김도형 (식품의약품안정청) ;
  • 박정욱 (동아대학교 의약생명공학과) ;
  • 서민정 (동아대학교 의약생명공학과) ;
  • 김민정 (동아대학교 생물공학과) ;
  • 이혜현 (동아대학교 생물공학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실) ;
  • 주우홍 (창원대학교 생물학과) ;
  • 정영기 (동아대학교 의약생명공학과)
  • 투고 : 2010.01.10
  • 심사 : 2010.02.18
  • 발행 : 2010.02.28

초록

혈전용해효소를 생산하는 Bacillus sp. J-19가 보편적인 한국의 조미제인 멸치젓갈에서 분리되었다. 그 혈전용해 효소는 에탄올 침전, Sephadex G-50을 이용한 젤 여과법 등을 포함하는 일련의 크로마토그래피 방법으로 순수분리 되었다. 조효소 추출액과 비교해서, 그 효소의 비활성은 1021배 증가하였고, 수율은 23%이었다. 순수분리한 효소의 분자량은 SDS-PAGE 상 약 45 kDa이었다. 특히, 합성기질인 serine protease (H-D-Ile-Pro-Arg-pNA,S-2288)에 대한 아미드활성은 약 17 U/mg이었다. 또한, 그 45 kDa 혈전용해효소의 60% 이상의 활성이 30%(w/v) sodium chloride 의 존재 하에서도 유지되었다. 이러한 발견들은 특이한 혈전용해효소를 제공해서, 실용적인 혈전용해제 개발을 유도할 수 있다.

A fibrinolytic enzyme producing Bacillus sp. J-19 was isolated from the popular Korean seasoning, pickled anchovy. The fibrinolytic enzyme was purified to homogeneity by chromatographic methods including ethanol precipitation and gel-filtration using Sephadex G-50. Compared to the crude enzyme extract, the specific activity of the enzyme increased 1021-fold with a recovery of 23%. The purified enzyme was estimated to be approximately 45 kDa by SDS-PAGE. Especially, the amidolytic activity in the presence of the synthetic substrate for serine protease (H-D-Ile-Pro-Arg-pNA, S-2288) represented approximately 17 U/mg. In addition, more than the 60% activity of the 45 kDa fibrinolytic activity was maintained in the presence of up to 30% (w/v) sodium chloride. These findings could provide a unique fibrinolytic enzyme, leading to a potential thrombolytic agent.

키워드

참고문헌

  1. Arai, K., J. Mimuro, S. Madoiwa, M. Matsuda, T. Sako, and Y. Sakata. 1995. Effect of staphylokinase concentration of plasminogen activation. Biochim. Biophys. Acta 1245, 69-75. https://doi.org/10.1016/0304-4165(95)00064-I
  2. Astrup, T. and S. Mullertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351. https://doi.org/10.1016/0003-9861(52)90121-5
  3. Blann, A. D., M. J. Landray, and G. Y. Lip. 2002. ABC of antithrombotic therapy: An overview of antithrombotic therapy. BMJ 25, 762-765.
  4. Bode, C., M. S. Runge, and R. W. Smalling. 1996. The future of thrombolysis in the treatment of acute myocardial infarction. Eur. Heart J. 17, 55-60. https://doi.org/10.1093/eurheartj/17.suppl_E.55
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Chang, C. T., M. H. Fan, F. C. Kuo, and H. Y. Sung. 2000. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 48, 3210-3216. https://doi.org/10.1021/jf000020k
  7. Dobrovolsky, A. B. and E. V. Titaeva. 2002. The fibrinolysis system: Regulation of activity and physiologic functions of its main components. Biochemistry (Moscow) 67, 99-108. https://doi.org/10.1023/A:1013960416302
  8. Fujita, M., K. Nomura, K. Hong, Y. Ito, and A. Asada. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Commun. 197, 1340-1347. https://doi.org/10.1006/bbrc.1993.2624
  9. Hsu, R. L., K. T. Lee, J. H. Wang, L. Y. Lee, and R. P. Chen. 2009. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. J. Agric. Food Chem. 57, 503-508. https://doi.org/10.1021/jf803072r
  10. Jain, S. C., U. Shinde, Y. Li, M. Inouye, and H. M. Berman. 1998. The crystal structure of an autoprocessed Ser221Cyssubtilisin E-propeptide complex at 2.0-A resolution. J. Mol. Biol. 284, 137-144. https://doi.org/10.1006/jmbi.1998.2161
  11. Jang, J. S., D. O. Kang, M. J. Chun, and S. M. Byun. 1992. Molecular cloning of a subtilisin J gene from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem. Biophys. Res. Commun. 184, 277-282. https://doi.org/10.1016/0006-291X(92)91189-W
  12. Jeong, Y. K., J. U. Park, H. Baek, S. H. Park, and I. S. Kong. 2001. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J. Microbiol. Biotechnol. 17, 89-92. https://doi.org/10.1023/A:1016685411809
  13. Jeong, Y. K., W. S. Yang, K. H. Kim, K. T. Chung, W. H. Joo, J. H. Kim, and J. U. Park. 2004. Purification of a fibrinolytic enzyme (myulchikinase) from pickled anchovy and its cytotoxicity to the tumor cell lines. Biotechnol. Lett. 26, 393-397. https://doi.org/10.1023/B:BILE.0000018257.18617.6d
  14. Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62, 2482-2488.
  15. Kim, J. H. and Y. S. Kim. 1999. A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci. Biotechnol. Biochem. 63, 2130-2136. https://doi.org/10.1271/bbb.63.2130
  16. Kim, H. K., G. T. Kim, D. K. Kim, W. A. Choi, S. H. Park, Y. K. Jeong, and I. S. Kong, 1997. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84, 307-312. https://doi.org/10.1016/S0922-338X(97)89249-5
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  18. Medved, L. V., D. A. Solovjov, and K. C. Ingham. 1966. Domain structure, stability and interactions in streptokinase. Eur. J. Biochem. 239, 333-339. https://doi.org/10.1111/j.1432-1033.1996.0333u.x
  19. Mihara, H., H. Sumi, T. Yoneta, H. Mizumoto, R. Ikeda, M. Seiki, and M. Maruyama. 1991. A novel fibrinolytic enzyme extracted from the earthworm Lumbricus rubellus. Jpn. J. Physiol. 41, 461-472. https://doi.org/10.2170/jjphysiol.41.461
  20. Mine, Y., A. H. K. Wong, and B. Jiang. 2005. Fibrinolytic enzymes in Asian traditional fermented foods. Food Res. Int. 38, 243-250. https://doi.org/10.1016/j.foodres.2004.04.008
  21. Nakamura, T., Y. Yamagata, and E. Ichishima. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56, 1869-1871. https://doi.org/10.1271/bbb.56.1869
  22. Park, S. S., S. L. Wong, L. F. Wang, and R. H. Doi. 1989. Bacillus subtilis subtilisin gene (aprE) is expressed from a sigma A (sigma 43) promoter in vitro and in vivo. J. Bacteriol. 171, 2657-2665.
  23. Peng, Y., Q. Huang, R. H. Zhang, and Y. Z. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp. Biochem. Physiol. B 134, 45-52. https://doi.org/10.1016/S1096-4959(02)00183-5
  24. Robb, F. T. and A. R. Place. 1995. Arhaea: A laboratory manual. Thermophiles; Cold Spring Harbor Laboratory, New York.
  25. Seo, J. H. and S. P. Lee. 2004. Production of fibrinolytic enzyme (KK) from soybean grits fermented by Bacillus firmus NA-1. J. Med. Food 7, 442-449. https://doi.org/10.1089/jmf.2004.7.442
  26. Smith, E. L., R. J. Delange, W. H. Evans, M. Landon, and F. S. Markland. 1968. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J. Biol. Chem. 243, 2184-2191.
  27. Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibrinolytic enzyme (Nattokinase) in the vegetable cheese natto: a typical and popular soybean food in the Japanese diet. Experimentia 43, 1110-1111. https://doi.org/10.1007/BF01956052
  28. Sumi, H., N. Nakajima, and C. Yatagai. 1995. A unique strong fibrinolytic enzyme (katsuwokinase) in skipjack "Shiokara", a Japanese traditional fermented food. Comp. Biochem. Physiol. 112, 543-547. https://doi.org/10.1016/0305-0491(95)00100-X
  29. Turpie, A. G., B. S. Chin, and G. Y. Lip. 2002. Venous thromboembolism: pathophysiology, clinical features, and prevention. BMJ 325, 887-890. https://doi.org/10.1136/bmj.325.7369.887
  30. Vasantha, N., L. D. Thompson, C. Rhodes, C. Banner, J. Nagle, and D. Filpula. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159, 811-819.
  31. Voet, D. and J. G. Voet. 1990. Biochemistry, 2nd eds., John Wiley & Sons Press, New York.
  32. Wang, C. T., B. P. Ji, B. Li, R. Nout, P. L. Li, H. Ji, and L. F. Chen. 2006. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J. Ind. Microbiol. Biotechnol. 33, 750-758. https://doi.org/10.1007/s10295-006-0111-6
  33. Wong, A. H. and Y. Mine. 2004. A novel fibrinolytic enzyme in fermented shrimp paste, a traditional Asian fermented seasoning. J. Agric. Food. Chem. 52, 980-986. https://doi.org/10.1021/jf034535y
  34. Wong, S. L., C. W. Price, D. S. Goldfarb, and R. H. Doi. 1984. The subtilisin E gene of Bacillus subtilis is transcribed from a sigma-37 promoter in vivo. Proc. Nat. Acad. Sci. USA. 81, 1184-1188. https://doi.org/10.1073/pnas.81.4.1184
  35. Yoshimoto, T., H. Oyama, T. Honda, H. Tone, T. Takeshita, T. Kamiyama, and D. Tsuru. 1988. Cloning and expression of subtilisin amylosacchariticus gene. J. Biochem. 103, 1060-1065.

피인용 문헌

  1. Purification and biochemical characterization of a 17 kDa fibrinolytic enzyme from Schizophyllum commune vol.48, pp.6, 2010, https://doi.org/10.1007/s12275-010-0384-3
  2. Screening Resistant Cultivars Against Powdery Mildew, Phytophthora Rot, and Fusarium Wilt and Evaluation of Cooking Oil and Egg Yolk Plus and pH adjusted Loess-sulfur Mixture to Control Powdery Mildew vol.52, pp.5, 2018, https://doi.org/10.14397/jals.2018.52.5.31