DOI QR코드

DOI QR Code

Purification and Biochemical Characteristics of a 45 kDa Fibrinolytic Enzyme from a Halophile

호염성균 유래 45 kDa 혈전용해효소의 순수분리와 생화학적 특성

  • 김도형 (식품의약품안정청) ;
  • 박정욱 (동아대학교 의약생명공학과) ;
  • 서민정 (동아대학교 의약생명공학과) ;
  • 김민정 (동아대학교 생물공학과) ;
  • 이혜현 (동아대학교 생물공학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실) ;
  • 주우홍 (창원대학교 생물학과) ;
  • 정영기 (동아대학교 의약생명공학과)
  • Received : 2010.01.10
  • Accepted : 2010.02.18
  • Published : 2010.02.28

Abstract

A fibrinolytic enzyme producing Bacillus sp. J-19 was isolated from the popular Korean seasoning, pickled anchovy. The fibrinolytic enzyme was purified to homogeneity by chromatographic methods including ethanol precipitation and gel-filtration using Sephadex G-50. Compared to the crude enzyme extract, the specific activity of the enzyme increased 1021-fold with a recovery of 23%. The purified enzyme was estimated to be approximately 45 kDa by SDS-PAGE. Especially, the amidolytic activity in the presence of the synthetic substrate for serine protease (H-D-Ile-Pro-Arg-pNA, S-2288) represented approximately 17 U/mg. In addition, more than the 60% activity of the 45 kDa fibrinolytic activity was maintained in the presence of up to 30% (w/v) sodium chloride. These findings could provide a unique fibrinolytic enzyme, leading to a potential thrombolytic agent.

혈전용해효소를 생산하는 Bacillus sp. J-19가 보편적인 한국의 조미제인 멸치젓갈에서 분리되었다. 그 혈전용해 효소는 에탄올 침전, Sephadex G-50을 이용한 젤 여과법 등을 포함하는 일련의 크로마토그래피 방법으로 순수분리 되었다. 조효소 추출액과 비교해서, 그 효소의 비활성은 1021배 증가하였고, 수율은 23%이었다. 순수분리한 효소의 분자량은 SDS-PAGE 상 약 45 kDa이었다. 특히, 합성기질인 serine protease (H-D-Ile-Pro-Arg-pNA,S-2288)에 대한 아미드활성은 약 17 U/mg이었다. 또한, 그 45 kDa 혈전용해효소의 60% 이상의 활성이 30%(w/v) sodium chloride 의 존재 하에서도 유지되었다. 이러한 발견들은 특이한 혈전용해효소를 제공해서, 실용적인 혈전용해제 개발을 유도할 수 있다.

Keywords

References

  1. Arai, K., J. Mimuro, S. Madoiwa, M. Matsuda, T. Sako, and Y. Sakata. 1995. Effect of staphylokinase concentration of plasminogen activation. Biochim. Biophys. Acta 1245, 69-75. https://doi.org/10.1016/0304-4165(95)00064-I
  2. Astrup, T. and S. Mullertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351. https://doi.org/10.1016/0003-9861(52)90121-5
  3. Blann, A. D., M. J. Landray, and G. Y. Lip. 2002. ABC of antithrombotic therapy: An overview of antithrombotic therapy. BMJ 25, 762-765.
  4. Bode, C., M. S. Runge, and R. W. Smalling. 1996. The future of thrombolysis in the treatment of acute myocardial infarction. Eur. Heart J. 17, 55-60. https://doi.org/10.1093/eurheartj/17.suppl_E.55
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Chang, C. T., M. H. Fan, F. C. Kuo, and H. Y. Sung. 2000. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 48, 3210-3216. https://doi.org/10.1021/jf000020k
  7. Dobrovolsky, A. B. and E. V. Titaeva. 2002. The fibrinolysis system: Regulation of activity and physiologic functions of its main components. Biochemistry (Moscow) 67, 99-108. https://doi.org/10.1023/A:1013960416302
  8. Fujita, M., K. Nomura, K. Hong, Y. Ito, and A. Asada. 1993. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Commun. 197, 1340-1347. https://doi.org/10.1006/bbrc.1993.2624
  9. Hsu, R. L., K. T. Lee, J. H. Wang, L. Y. Lee, and R. P. Chen. 2009. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. J. Agric. Food Chem. 57, 503-508. https://doi.org/10.1021/jf803072r
  10. Jain, S. C., U. Shinde, Y. Li, M. Inouye, and H. M. Berman. 1998. The crystal structure of an autoprocessed Ser221Cyssubtilisin E-propeptide complex at 2.0-A resolution. J. Mol. Biol. 284, 137-144. https://doi.org/10.1006/jmbi.1998.2161
  11. Jang, J. S., D. O. Kang, M. J. Chun, and S. M. Byun. 1992. Molecular cloning of a subtilisin J gene from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem. Biophys. Res. Commun. 184, 277-282. https://doi.org/10.1016/0006-291X(92)91189-W
  12. Jeong, Y. K., J. U. Park, H. Baek, S. H. Park, and I. S. Kong. 2001. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J. Microbiol. Biotechnol. 17, 89-92. https://doi.org/10.1023/A:1016685411809
  13. Jeong, Y. K., W. S. Yang, K. H. Kim, K. T. Chung, W. H. Joo, J. H. Kim, and J. U. Park. 2004. Purification of a fibrinolytic enzyme (myulchikinase) from pickled anchovy and its cytotoxicity to the tumor cell lines. Biotechnol. Lett. 26, 393-397. https://doi.org/10.1023/B:BILE.0000018257.18617.6d
  14. Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62, 2482-2488.
  15. Kim, J. H. and Y. S. Kim. 1999. A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci. Biotechnol. Biochem. 63, 2130-2136. https://doi.org/10.1271/bbb.63.2130
  16. Kim, H. K., G. T. Kim, D. K. Kim, W. A. Choi, S. H. Park, Y. K. Jeong, and I. S. Kong, 1997. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84, 307-312. https://doi.org/10.1016/S0922-338X(97)89249-5
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  18. Medved, L. V., D. A. Solovjov, and K. C. Ingham. 1966. Domain structure, stability and interactions in streptokinase. Eur. J. Biochem. 239, 333-339. https://doi.org/10.1111/j.1432-1033.1996.0333u.x
  19. Mihara, H., H. Sumi, T. Yoneta, H. Mizumoto, R. Ikeda, M. Seiki, and M. Maruyama. 1991. A novel fibrinolytic enzyme extracted from the earthworm Lumbricus rubellus. Jpn. J. Physiol. 41, 461-472. https://doi.org/10.2170/jjphysiol.41.461
  20. Mine, Y., A. H. K. Wong, and B. Jiang. 2005. Fibrinolytic enzymes in Asian traditional fermented foods. Food Res. Int. 38, 243-250. https://doi.org/10.1016/j.foodres.2004.04.008
  21. Nakamura, T., Y. Yamagata, and E. Ichishima. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56, 1869-1871. https://doi.org/10.1271/bbb.56.1869
  22. Park, S. S., S. L. Wong, L. F. Wang, and R. H. Doi. 1989. Bacillus subtilis subtilisin gene (aprE) is expressed from a sigma A (sigma 43) promoter in vitro and in vivo. J. Bacteriol. 171, 2657-2665.
  23. Peng, Y., Q. Huang, R. H. Zhang, and Y. Z. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp. Biochem. Physiol. B 134, 45-52. https://doi.org/10.1016/S1096-4959(02)00183-5
  24. Robb, F. T. and A. R. Place. 1995. Arhaea: A laboratory manual. Thermophiles; Cold Spring Harbor Laboratory, New York.
  25. Seo, J. H. and S. P. Lee. 2004. Production of fibrinolytic enzyme (KK) from soybean grits fermented by Bacillus firmus NA-1. J. Med. Food 7, 442-449. https://doi.org/10.1089/jmf.2004.7.442
  26. Smith, E. L., R. J. Delange, W. H. Evans, M. Landon, and F. S. Markland. 1968. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J. Biol. Chem. 243, 2184-2191.
  27. Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibrinolytic enzyme (Nattokinase) in the vegetable cheese natto: a typical and popular soybean food in the Japanese diet. Experimentia 43, 1110-1111. https://doi.org/10.1007/BF01956052
  28. Sumi, H., N. Nakajima, and C. Yatagai. 1995. A unique strong fibrinolytic enzyme (katsuwokinase) in skipjack "Shiokara", a Japanese traditional fermented food. Comp. Biochem. Physiol. 112, 543-547. https://doi.org/10.1016/0305-0491(95)00100-X
  29. Turpie, A. G., B. S. Chin, and G. Y. Lip. 2002. Venous thromboembolism: pathophysiology, clinical features, and prevention. BMJ 325, 887-890. https://doi.org/10.1136/bmj.325.7369.887
  30. Vasantha, N., L. D. Thompson, C. Rhodes, C. Banner, J. Nagle, and D. Filpula. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159, 811-819.
  31. Voet, D. and J. G. Voet. 1990. Biochemistry, 2nd eds., John Wiley & Sons Press, New York.
  32. Wang, C. T., B. P. Ji, B. Li, R. Nout, P. L. Li, H. Ji, and L. F. Chen. 2006. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J. Ind. Microbiol. Biotechnol. 33, 750-758. https://doi.org/10.1007/s10295-006-0111-6
  33. Wong, A. H. and Y. Mine. 2004. A novel fibrinolytic enzyme in fermented shrimp paste, a traditional Asian fermented seasoning. J. Agric. Food. Chem. 52, 980-986. https://doi.org/10.1021/jf034535y
  34. Wong, S. L., C. W. Price, D. S. Goldfarb, and R. H. Doi. 1984. The subtilisin E gene of Bacillus subtilis is transcribed from a sigma-37 promoter in vivo. Proc. Nat. Acad. Sci. USA. 81, 1184-1188. https://doi.org/10.1073/pnas.81.4.1184
  35. Yoshimoto, T., H. Oyama, T. Honda, H. Tone, T. Takeshita, T. Kamiyama, and D. Tsuru. 1988. Cloning and expression of subtilisin amylosacchariticus gene. J. Biochem. 103, 1060-1065.

Cited by

  1. Purification and biochemical characterization of a 17 kDa fibrinolytic enzyme from Schizophyllum commune vol.48, pp.6, 2010, https://doi.org/10.1007/s12275-010-0384-3
  2. Screening Resistant Cultivars Against Powdery Mildew, Phytophthora Rot, and Fusarium Wilt and Evaluation of Cooking Oil and Egg Yolk Plus and pH adjusted Loess-sulfur Mixture to Control Powdery Mildew vol.52, pp.5, 2018, https://doi.org/10.14397/jals.2018.52.5.31