References
- Aydar, E., S. Yeo, M. Djamgoz, and C. Palmer. 2009. Abnormal expression, localization and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: a potential target for breast cancer diagnosis and therapy. Cancer Cell Int. 18, 9-23.
- Bessa, C., C. A. Teixeira, M. Mangas, A. Dias, M. C. Sa. Miranda, A. Guimaraes, J. C. Ferreira, N. Canas, P. Cabral, and M. G. Ribeiro. 2006. Two novel CLN5 mutations in a Portuguese patient with vLINCL: insights into molecular mechanisms of CLN5 deficiency. Mol. Genet. Metab. 89, 245-253. https://doi.org/10.1016/j.ymgme.2006.04.010
- Carlson, M. E., C. Suetta, M. J. Conboy, P. Aagaard, A. Mackey, M. Kjaer, and I. Conboy. 2009. Molecular aging and rejuvenation of human muscle stem cells. EMBO. Mol. Med. 1, 381-391. https://doi.org/10.1002/emmm.200900045
- Charness, M. E. 1978. Clinical conferences at The Johns Hopkins Hospital. Hypokalemic periodic paralysis. Johns Hopkins Med. J. 143, 148-153.
- Cottle, D. L., M. J. McGrath, B. S. Cowling, I. D. Coghill, S. Brown, and C. A. Mitchell. 2007. FHL3 binds MyoD and negatively regulates myotube formation. J. Cell Sci. 120, 1423-1435. https://doi.org/10.1242/jcs.004739
- Fealey, M. E., W. D. Edwards, M. Grogan, and T. A. Orszulak. 2009. Neuronal ceroid lipofuscinosis in a 31-year-old woman presenting as biventricular heart failure with restrictive features. Cardiovasc. Pathol. 18, 44-48. https://doi.org/10.1016/j.carpath.2007.09.004
- Inagaki, N., T. Gonoi, J. P. Clement. 4th, N. Namba, J. Inazawa, and G. Gonzalez. 1995. Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor. Science 270, 1166-1170. https://doi.org/10.1126/science.270.5239.1166
- Kil, T. H. and J. B. Kim. 2009. Severe respiratory phenotype caused by a de novo Arg528Gly mutation in the CACNA1S gene in a patient with hypokalemic periodic paralysis. Eur. J. Paediatr. Neurol. doi:10.1016/j.ejpn.2009.08.004.
- Kim, J. B., K. Y. Lee, and J. K. Hur. 2005. A Korean family of hypokalemic periodic paralysis with mutation in a voltage-gated calcium channel (R1239G). J. Korean Med. Sci. 20, 162-165. https://doi.org/10.3346/jkms.2005.20.1.162
- Kim, J. B., M. H. Kim, S. J. Lee, D. J. Kim, and B. C. Lee. 2007. The genotype and clinical phenotype of Korean patients with familial hypokalemic periodic paralysis. J. Korean Med. Sci. 22, 946-951. https://doi.org/10.3346/jkms.2007.22.6.946
- Kim, S. J., Y. J. Lee, and J. B. Kim. 2010. Reduced expression and abnormal localization of the KATP channel subunit SUR2A in patients with familial hypokalemic periodic paralysis. Biochemical and Biophysical Research Communications 391, 974-978. https://doi.org/10.1016/j.bbrc.2009.11.177
- Lapie, P., P. Lory, and B. Fontaine. 1997. Hypokalemic periodic paralysis: an autosomal dominant muscle disorder caused by mutations in a voltage-gated calcium channel. Neuromusc. Disord. 7, 234-240. https://doi.org/10.1016/S0960-8966(97)00435-5
- Louis, J. Ptacek. 2002. Channel Surfing. Clinical Endocrinology & Metabolism 87, 4879-4880. https://doi.org/10.1210/jc.2002-021458
-
Kalin, N., A. Claass, M. Sommer, E. Puchelle, and B. Tummler. 1999.
${\Delta}F508$ CFTR protein expression in tissues from patients with cystic fibrosis. J. Clin. Invest. 103, 1379-1389. https://doi.org/10.1172/JCI5731 - Poole, R. J., D. P. Briskin, Z. Kratky, and R. M. Johnstone. 1984. Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet : characterization of proton-transport and ATPase in tonoplast vesicles. Plant Physiol. 74, 549-556. https://doi.org/10.1104/pp.74.3.549
- Prinetti, A., V. Chigorno, G. Tettamanti, and S. Sonnino. 2000. Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J. Biol. Chem. 275, 11658-11665. https://doi.org/10.1074/jbc.275.16.11658
- Robert, L. R. 1999. Insulin acts in hypokalemic periodic paralysis by reducing inward rectifier K+ current. Neurology 53, 1556-1663. https://doi.org/10.1212/WNL.53.7.1556
- Seino, S. 1999. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu. Rev. Physiol. 61, 337-362. https://doi.org/10.1146/annurev.physiol.61.1.337
- Tricarico, D., S. Pierno, R. Mallamaci, G. S. Briqiani, R. Capriulo, and G. Santoro. 1998. The biophysical and pharmacological characteristics of skeletal muscle KATP channels are modified in K+ depleted rat, an animal model of hypokalemic periodic paralysis. Mol. Pharmacol. 54, 197-206.
- Tricarico, D., S. Servidei, P. Tonali, K. Jurkat-Rott, and D. C. Camerino. 1999. Impairment of skeletal muscle adenosine triphosphate-sensitive K+ channels in patients with hypokalemic periodic paralysis. J. Clin. Inv. 103, 675-682. https://doi.org/10.1172/JCI4552
- Tricarico, D., A. Mele, B. Liss, F. M. Ashcroft, A. L. Lundquist, R. R. Desai, A. L. Jr. George, and D. Conte. Camerino. 2008. Contecamerino. Reduced expression of Kir6.2/SUR2A subunits explains KATP deficiency in K+-depleted rats. Neuromuscul. Disord. 18, 74-80. https://doi.org/10.1016/j.nmd.2007.07.009
- Chauhan, V. S., S. Tuvia, M. Buhusi, V. Bennett, and A. O. Grant. 2000. Abnormal Cardiac Na+ Channel Properties and QT Heart Rate Adaptation in Neonatal Ankyrin B Knockout Mice. Circ. Res. 86, 441-447. https://doi.org/10.1161/01.RES.86.4.441