DOI QR코드

DOI QR Code

Variation of Lactate Dehydrogenase Isozymes in Angelfish (Pterophyllum scalare) according to Acute Environmental Change

급격한 환경변화에 대한 angelfish (Pterophyllum scalare) 젖산탈수소효소 동위효소의 변화

  • An, Chang-Su (Department of Quality Assurance, SK Chemicals Life Science Biz.) ;
  • Cho, Sung-Kyu (Industrial Science Research Institute, Cheongju University) ;
  • Yum, Jung-Joo (Department of Life Science, Cheongju University)
  • 안창수 (SK케미칼 생명과학사업본부 품질보증팀) ;
  • 조성규 (청주대학교 산업과학연구소) ;
  • 염정주 (청주대학교 자연과학부 생명과학)
  • Received : 2009.12.20
  • Accepted : 2010.02.17
  • Published : 2010.03.30

Abstract

In this study, the properties and gene expression of the lactate dehydrogenase (EC 1.1.1.27, LDH) isozyme were studied in angelfish (Pterophyllum scalare) - known for their adaptation to the low oxygen environment of the tropics - which were acclimated to acute temperature change ($27{\pm}0.5{\rightarrow}18{\pm}0.5^{\circ}C$) and dissolved oxygen (DO) change ($6{\pm}1{\rightarrow}18\;ppm$) for 2 hours. The properties of the LDH isozymes were confirmed in the native-polyacrylamide gel electrophoresis, Western blot analysis and enzyme activity measurement. Liver- and eye-specific Ldh-C gene were expressed in liver, eye and brain tissues. Through Western blot analysis, the LDH $A_4$ isozyme was shown to have a more cathodal mobility relative to the $B_4$ isozyme. In the liver tissue, the LDH $A_4$ isozyme increased with temperature drop while the $B_4$ isozyme decreased. The LDH $A_4$ and $C_4$ isozymes increased with DO increment, while the $B_4$ isozyme decreased. In the eye tissue, the LDH $A_4$ and B4 isozymse increased with temperature drop while the $B_4$ isozyme decreased. The LDH $A_4$ and $B_4$ isozymes increased with DO increment, but the $C_4$ isozyme and isozymes including the subunit C decreased. In the heart tissue, LDH activity increased with DO increment, as well as the LDH $B_4$ isozyme. In the brain tissue, the LDH $A_4$ and $B_4$ isozymes increased with temperature drop. The LDH $B_4$ isozyme increased with DO increment. Accordingly, since the liver- and eye-specific Ldh-C are influenced by changes in DO and the LDH $B_4$ and $C_4$ isozymes are relatively controlled in the liver and eye tissues, the $C_4$ isozyme can be considered to have a lactate oxidase function.

열대 저산소 환경에 적응되어 있는 angelfish (Pterophyllum scalare)를 급격한 온도변화($27{\pm}0.5{\rightarrow}18{\pm}0.5^{\circ}C$) 및 DO 변화($6{\pm}1{\rightarrow}18\;ppm$)에 2시간 동안 적응시킨 후 젖산탈수소효소(EC 1.1.1.27, lactate dehydrogenase, LDH) 동위효소의 특성 및 유전자발현을 연구하였다. LDH 동위효소의 특성은 native-polyacrylamide gel 전기영동, Western blot 분석 및 효소활성 측정으로 확인하였다. 전기영동 결과 liver- 및 eye-specific Ldh-C 유전자는 간, 눈 및 뇌 조직에서 발현되었다. Western blot 분석 결과 LDH $A_4$ 동위효소는 $B_4$ 동위효소보다 음극 쪽에 나타났다. 간 조직에서 온도 저하 시 LDH $A_4$ 동위효소가 증가하고 $B_4$ 동위효소는 감소하였으며, DO 증가 시 LDH $A_4$$C_4$ 동위효소가 증가하고 $B_4$ 동위효소는 감소하였다. 눈 조직에서는 온도 저하 시 LDH $A_4$$B_4$ 동위효소가 증가하고 $C_4$ 동위효소는 감소하였으며, DO 증가 시 LDH $A_4$$B_4$ 동위효소는 증가하지만 $C_4$ 동위효소 및 하부단위체 C를 포함하는 동위효소는 감소하였다. 심장 조직에서는 DO 증가 시 LDH 활성이 증가하였고, LDH $B_4$ 동위효소가 증가하였다. 뇌 조직에서는 온도 저하 시 LDH $A_4$$B_4$ 동위효소가 증가하였고, DO 증가 시 LDH $B_4$ 동위효소는 증가하였다. 따라서 liver- 및 eye-specific Ldh-C는 DO 변화에 의해 영향을 받으며 간 및 눈 조직에서 LDH $B_4$$C_4$ 동위효소는 서로 상대적으로 조절되므로 $C_4$ 동위효소는 lactate oxidase로서 기능을 나타내는 것으로 사료된다.

Keywords

References

  1. Almeida-Val, V. M. F., M. N. Paula-Silva, W. P. Duncan, N. P. Lopes, A. L. Val, and S. Land. 1999. Increase of anaerobic potential during growth of an Amazonian cichlid, Astronotus ocellatus: survivorship and LDH regulation after hypoxia exposure, pp. 437-448, In Val, A. L. and V. M. F. Almeida-Val (eds.), Biology of Tropical Fishes. INPA, Mamaus.
  2. Almeida-Val, V. M. F. and A. L. Val. 1993. Evolutionary trends of LDH isozymes in fishes. Comp. Biochem. Physiol. B 105, 21-28. https://doi.org/10.1016/0305-0491(93)90164-Z
  3. Basaglia, F. 1991. Lactate dehydrogenase isozymes and their genetic variation in fifteen Sparidae species(Perciformes, Teleostei). Comp. Biochem. Physiol. B 98, 1-8. https://doi.org/10.1016/0305-0491(91)90300-3
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Cahn, R. P., N. O. Kaplan, L. Levine, and E. Zwilling. 1962. Nature and development of lactate dehydrogenase. Science 136, 962-969. https://doi.org/10.1126/science.136.3520.962
  6. Cho, S. K. 2000. Mitochondrial lactate dehydrogenase in tissues of vertebrate. Ph. D. Thesis, Cheongju University, Cheongju, Korea.
  7. Cho, S. K., B. Ku, H. An, E. M. Park, S. Y. Park, J. B. Kim, and J. J. Yum. 2009. Purification and characterization of lactate dehydrogenase $A_4$ isozyme in mandrin fish (Siniperca scherzeri). J. Life Sci. 19, 256-263. https://doi.org/10.5352/JLS.2009.19.2.256
  8. Cho, S. K. and J. J. Yum. 2005. Changes of activities and isozymes of lactate dehydrogenase in Coreoperca herzi and Pseudogobio esocinus acclimated to rapid increase of dissolved oxygen. J. Life Sci. 15, 71-79. https://doi.org/10.5352/JLS.2005.15.1.071
  9. Davis, B. J. 1964. Disc electrophoresis-II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121, 404-427. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  10. Feller, G., J. P. Pauly, A. Smal, P. O'Carra, and C. Gerday. 1991. The lactate dehydrogenase of the icefish heart: biochemical adaptations to hypoxia tolerance. Biochem. Biophys. Acta 1079, 343-347. https://doi.org/10.1016/0167-4838(91)90079-F
  11. Goldberg, E. 1972. Amino acid composition and properties of crystalline lactate dehydrogenase X from mouse testes. J. Biol. Chem. 247, 2044-2048.
  12. Guderley, H. 1998. Temperature and growth rates as modulators of the metabolic capacities of fish muscle, pp. 58-87, In Portner, H. O. and R. C. Playle (eds.), Cold Ocean Physiology. Cambridge Univ. Press, Cambridge.
  13. Guillemin, K. and M. A. Krasnow. 1997. The hypoxic response: Huffing and HIFing. Cell 89, 9-12. https://doi.org/10.1016/S0092-8674(00)80176-2
  14. Hardewig, I., P. L. N. Van Dijk, S. C. Leary, and C. D. Moyes. 2000. Temporal changes in enzyme activity and mRNA levels during thermal challenge in white sucker. Journal of Fish Biology 56, 196-207. https://doi.org/10.1111/j.1095-8649.2000.tb02095.x
  15. Hazel, J. R. and C. L. Prosser. 1974. Molecular mechanisms of temperature compensation in poikilotherms. Physological Reviews 54, 620-677.
  16. Hochachka, P. W. and G. N. Somero. 1984. Biochemical adaptation. pp. 537, Princeton Univ. Press, Princeton.
  17. Holt, R. W. and W. S. Leibel. 1987. Coexpression of distinct eye- and liver-specific LDH isozymes in Cilchlid fish. J. Exp. Zool. 224, 337-343.
  18. Kepes, K. L. and G. S. Whitt. 1972. Specific lactate dehydrogenase gene functon in the differentiated liver of Cyprinid fish. Genetics 71, 5-29.
  19. Kettler, M. K. and G. S. Whitt. 1986. An apparent progressive and recurrent evolutionary restriction in tissue expression of a gene, the lactate dehydrogenase-C gene, within a family of bony fish (Salmoniformes: Umbridae). J. Mol. Evol. 23, 95-107. https://doi.org/10.1007/BF02099903
  20. Kim, M. O. and J. J. Yum. 1989. Purification, kinetics and immunochemistry of two homotetrameric lactate dehydrogenase isozymes in Pseudogobio esocinus (Cypriniformes). Korean J. Zool. 32, 420-428.
  21. Kim, J. B. and J. J. Yum. 1997. Acclimation of lactate dehydrogenase in Silurus asotus to acute environmental variations. J. Ind. Sci., Cheongju Univ., Korea. 15, 381-388.
  22. Klyachko, O. S. and N. D. Ozernyuk. 1994. The effect of temperature on the kinetic properties of lactate dehydrogenase from embryos of various fish species. Comp. Biochem. Physiol. B 107, 593-595. https://doi.org/10.1016/0305-0491(94)90190-2
  23. Markert, C. L. 1984. Lactate dehydrogenase-biochemistry and function of lactate dehydrogenase. Cell Biochem. Function 2, 131-134. https://doi.org/10.1002/cbf.290020302
  24. Markert, C. L., J. B. Shaklee, and G. S. Whitt. 1975. Evolution of a gene: multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189, 102-114. https://doi.org/10.1126/science.1138367
  25. Martinez, G., P. Behrens, and Z. Coppes. 1994. pH and temperature influences on the Km values of LDH A4 from white muscles of two eurythermal sciaenid fishes. Comp. Biochem. Physiol. B 107, 645-648. https://doi.org/10.1016/0305-0491(94)90198-8
  26. Mendiola, P. and J. De Costa. 1991. The effects of temperature and pH on the kinetic properties of heart muscle lactate dehydrogenase from anuran amphinians. Comp. Biochem. Physiol. B 98, 529-534. https://doi.org/10.1016/0305-0491(91)90248-C
  27. Ozernyuk, N. D., O. S. Klyachko, and E. S. Polosukhina. 1994. Acclimation temperature affects the functional and structural properties of lactate dehydrogenase from fish (Misgurnus fossilis) skeletal muscles. Comp. Biochem. Physiol. B 107, 141-145. https://doi.org/10.1016/0305-0491(94)90236-4
  28. Pahl, H. L. and P. A. Baeuerle. 1994. Oxygen and the control of gene expressin. Bioessays 16, 497-502. https://doi.org/10.1002/bies.950160709
  29. Panepucci, L. L. L., M. L. Schwantes, and A. R. Schwantes. 1984. Loci that encode the lactate dehydrogenase in 23 species of fish belonging to the orders Cypriniformes, Siluriformes and Perciformes: adaptive features. Comp. Biochem. Physiol. B 77, 867-876. https://doi.org/10.1016/0305-0491(84)90326-2
  30. Park, S. Y. and J. J. Yum. 1993. Lactate dehydrogenase isozymes of Cypriniform and Perciform fishes: Expression of the Ldh-C gene. J. Ind. Sci., Cheongju Univ., Korea. 11, 265-277.
  31. Prosser, C. L. 1991. Temperature, pp. 109-165, In Prosser, C. L. (ed.), Comparative animal physiology, 4th eds. Environmental and metabolic animal physiology. Wiley-Liss Inc., New York.
  32. Russell, J. B. and K. L. Robyn. 1999. Hypoxic repressoin of lactate dehydrogenase-B in retina. Exp. Eye. Res. 69, 685-693. https://doi.org/10.1006/exer.1999.0745
  33. Schnaitman, C., V. G. Erwin, and J. W. Greenawalt. 1967. The submitochondrial localization of monoamine oxidase. J. Cell Bio. 32, 719-735. https://doi.org/10.1083/jcb.32.3.719
  34. Segal, J. A. and D. L. Crawford. 1994. LDH-B enzyme expression: the mechanisms of alterd gene expression in acclimation and evolutionary adaptation. Am. J. Physiol. 267, 1150-1153.
  35. Shaklee, J. B., J. A. Christiansen, B. D. Sidell, C. L. Prosser, and G. S. Whitt. 1977. Molecular aspects of temperature acclimation in fish: contributions of changes in enzyme activities and isozyme patterns to metabolic reorganization in the green sunfish. J. Exp. Zool. 201, 1-20. https://doi.org/10.1002/jez.1402010102
  36. Shaklee, J. B., K. L. Kepes, and G. S. Whitt. 1973. Specialized lactate dehydrogenase isozymes: the molecular and gentic basis for the unique eye and liver LDHs of teleost fishes. J. Exp. Zool. 185, 217-240. https://doi.org/10.1002/jez.1401850209
  37. Shaklee, J. B. and G. S. Whitt. 1981. Lactate dehydrogenase isozymes of Gadiform fishes: divergent patterns of gene expression indicate a heterogeneous taxon. Copeia 3, 563-578.
  38. Skidmore, A. and T. J. C. Beebee. 1991. Changes in testicular lactate dehydrogenase of the rat (Rattus norvegicus) during growth and developmant. Comp. Biochem. Physiol. B 98, 279-282. https://doi.org/10.1016/0305-0491(91)90179-H
  39. Somero, G. N. 1997. Proteins and temperature. Annual Reviews of Physiology 57, 43-68.
  40. Tsukuda, H. 1982. Effect of temperature on the red and white muscle lactate dehydrogenase of thermally acclimated goldfish. Comp. Biochem. Physiol. B 73, 607-611. https://doi.org/10.1016/0305-0491(82)90083-9
  41. Val, A. L. and V. M. F. Almeida-Val. 1995. Fishes of the Amazon and Their Environment. pp. 55-56, Springer-Verlag, Berlin.
  42. Whitt, G. S. 1970. Developmental genetics of the lactate dehydrogenase isozymes of fish. J. Exp. Zool. 175, 1-35. https://doi.org/10.1002/jez.1401750102

Cited by

  1. Effects of Resistance Training on Skeletal Muscle GLUT-4 Protein and LDH Isozyme Expression in Rats vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1532
  2. Metabolic Adjustments of Lactate Dehydrogenase Isozymes to the Environmental Temperature in Bluegill (Lepomis macrochirus) vol.26, pp.10, 2016, https://doi.org/10.5352/JLS.2016.26.10.1105
  3. Purification and Characterization of Eye-Specific Lactate Dehydrogenase C4Isozyme in Greenling (Hexagrammos otakii) vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1565