DOI QR코드

DOI QR Code

The Pulation Structure of the Pacific Cod (Gadus macrocephalus Tilesius) Based on Mitochondrial DNA Sequences

미토콘드리아 유전자 염기서열 분석에 의한 대구 계군 분석

  • Seo, Young-Il (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Kim, Joo-Il (Fisheries Resources and Environment Department, National Fisheries Research and Development Institute) ;
  • Oh, Taeg-Yun (Jeju Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Lee, Sun-Kil (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Park, Jong-Hwa (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Kim, Hee-Yong (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Cho, Eun-Seob (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute)
  • 서영일 (국립수산과학원 남해수산연구소) ;
  • 김주일 (제주수산연구소) ;
  • 오택윤 (국립수산과학원 자원연구과) ;
  • 이선길 (국립수산과학원 남해수산연구소) ;
  • 박종화 (국립수산과학원 남해수산연구소) ;
  • 김희용 (국립수산과학원 남해수산연구소) ;
  • 조은섭 (국립수산과학원 남해수산연구소)
  • Received : 2010.01.06
  • Accepted : 2010.02.19
  • Published : 2010.03.30

Abstract

To assess population structure and genetic diversity among the Pacific cod (Gadus macrocephalus), we investigated mtDNA COI gene sequences of 7 populations. Samples were obtained from Sokcho, Wolsung, Geojedo, Yeosu, Geomundo and Westsouth in 2008 and 2009 (n=28). The sequence analysis of 28 individual samples showed 8 haplotypes, ranging in sequence divergence by pairwise comparisons from 0.2 to 2.2% (1 bp-11 bp). The Gal haplotype was found in Wolsung, Geojedo, Yeosu, Geomundo and Westsouth, and was regarded as the main haplotype of Korean Pacific cod. Ga2, Ga3, Ga6 and Ga7 haplotypes were found only in Sokcho. In the PHYLIP analysis, 8 haplotypes formed two independent groups: cladeA consisted of Ga2, Ga3, Ga6 and Ga7 haplotypes, whereas cladeB contained Gal, Ga4, Ga5 and Ga8 haplotypes. The genetic relationship between the two groups was weakly supported by bootstrap analysis(<50%). In pairwise comparisons between 6 populations other than that from Sokcho, a very high per generation migration ratio ($N_m$=infinite) and a very low level of geographic distance ($F_{sr}=-0.0123-(-0.0423)$) were observed. The estimates of genetic distance between Sokcho and the other localities were all statistically significant (p<0.05, p<0.01, p<0.001), indicating a limited mtDNA-based gene flow between Sokcho and other regions. The finding of the lowest genetic diversity in the Sokcho population (nucleotide diversity=0.00589) may be a result of relatively small population size and interrupted gene flow to other localities. Consequently, the overall considerable migration of Pacific cod population in Korea caused a genetically homogeneous structure to form, although a distinct population was found in this study.

본 연구는 2008년에서 2009년 동안 속초, 월성, 거제도, 여수, 거문도, 서남해역에서 채집된 대구어미를 대상으로 유전적 집단구조를 조사했다. 시험에 사용된 28 마리 중에서 8 종류의 haplotype이 발견되었다. 상호 유전자 비교시 0.2-2.2% 범위에서 유전자 변이율을 볼 수 있었다. Gal haplotype은 월성, 거제도, 여수, 거문도, 서남해역에서 모두 발견된 haplotype으로 우리나라 대구의 가장 대표적인 haplotype인 것으로 추측된다. 그러나 Ga2, Ga3, Ga6, Ga7 haplotype은 속초에서만 나타났다. 또한 유전자 상호관계 분석에서도 속초에서 나타난 haplotype은 독립적인 개체군을 형성하고 있으면 다른 haplotype과의 유연 성립율은 50% 이하로 나타났다. 속초를 제외한 나머지 지역의 지역적 유전거리는 -0.0123 에서 -0.0423 이면 유전적 이동률은 거의 무한대로 보여 동일한 집단을 형성하고 있는 것으로 보였다. 그러나 속초와는 현저한 유전적 거리를 나타내고 있고, 속초의 유전적 다양성이 가장 낮게 나타나서 속초의 대구 개체군은 소형임과 아울러 다른 지역관의 유전적 이동이 거의 차단된 것으로 보인다. 따라서 우리나라에서 어획되는 대구 계군은 속초를 제외하고 활발한 유전적 이동으로 동일한 유전적 집단을 형성하고 있는 것으로 보인다.

Keywords

References

  1. Asahida, T., T. Kobayashi, K. Saitoh, and I. Nakayama. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci. 62, 727-730. https://doi.org/10.2331/suisan.62.727
  2. Bembo, D. G., G. R. Carvalho, N. Cingolani, and T. J. Pitcher. 1996. Electrophoretic analysis of stock structure in Northern Mediterranean anchovies, Engraulis encrasicolus. ICES J. Mar. Sci. 53, 115-128. https://doi.org/10.1006/jmsc.1996.0011
  3. Carr, S. M., D. S. Kivlichan, P. Pepin, and D. C. Crutcher. 1998. Molecular systematics of gadid fishes: implications for the biogeographic origins of Pacific species. Can. J. Zool. 77, 19-26.
  4. Carr, S. M. and H. D. Marshall. 1991. Detection of intra-specific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic cod (Gadus mrohua) by the polymerase chain reaction. Can. J. Fish Aquat. Sci. 48, 48-52. https://doi.org/10.1139/f91-007
  5. Cho, E. S. and J. I. Kim. 2006. Mitochondrial DNA polymorphism of the Japanese anchovy (Engrulis japonicus Temminck & Schlegel) collected from the Korean offshore and inshore waters. J. Life Sci. 16, 812-827. https://doi.org/10.5352/JLS.2006.16.5.812
  6. Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491.
  7. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) ver. 3.5c. Department of Genetics, University of Washington, Seattle.
  8. Frankham, R. 1996. Conservation genetics. Ann. Rev. Genet. 29, 305-327.
  9. Funamoto, T. and I. Aoki. 2002. Reproductive ecology of Japanese anchovy off the Pacific coast of eastern Honshu, Japan. J. Fish Biol. 60, 154-169. https://doi.org/10.1111/j.1095-8649.2002.tb02395.x
  10. Grant, W. S. 1985. Biochemical genetic stock structure of the southern African anchovy, Engraulis capensis Gilchrist. J. Fish Biol. 27, 23-29. https://doi.org/10.1111/j.1095-8649.1985.tb04006.x
  11. Holsinger, K. E. and R. J. Mason-Gamer. 1996. Hierarchical analysis of nucleotide diversity in geographically structured populations. Genetics 142, 629-639.
  12. Johansen, S., P. H. Guddal, and J. M. Green. 1990. Organization of the mitochondrial genome of Atlantic cod, Gadus morhua. Nucleic Acids Res. 18, 411-419. https://doi.org/10.1093/nar/18.3.411
  13. Kim, J. I., T. Y. Oh, W. S. Yang, and E. S. Cho. 2008. Development of molecular marker to distinguish Octopus minor Sasaki caught in Korea and that in China. J. Life Sci. 18, 284-286. https://doi.org/10.5352/JLS.2008.18.2.284
  14. Kim, J. Y., E. S. Cho, and W. J. Kim. 2004. Population genetic structure of Japanese anchovy (Engrahus japonicus) in Korean waters based on mitochondrial 12S ribosomal RNA gene sequence. J. Life Sci. 14, 938-950. https://doi.org/10.5352/JLS.2004.14.6.938
  15. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 116, 111-120.
  16. Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S. Paabo, F. X. Villablanca, and A. C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86, 6196-6200. https://doi.org/10.1073/pnas.86.16.6196
  17. Nei, M. 1987. Molecular Evolutionary Genetics. pp.512, Columbia Univ. Press, New York, NY.
  18. Oh, T. Y., J. I. Kim, Y. I. Seo, and E. S. Cho. 2009. The population genetic structure of the Japanese anchovy (Engraulis japonicus Temminck & Schlegel) in the West, South and East Seas of Korea based on microsatellite DNA analysis. J. Life Sci. 19, 174-178. https://doi.org/10.5352/JLS.2009.19.2.174
  19. Reichow, D. and M. J. Smith. 2001. Microsatellites reveal high levels of gene flow among populations of the California squid Loligo opalescens. Mol. Ecol. 10, 1101-1109. https://doi.org/10.1046/j.1365-294X.2001.01257.x
  20. Reynolds, J., B. S. Weir, and C. C. Cockerham. 1983. Estimation for the coancestry coefficient: basis for a short-term genetic distance. Genetics 105, 767-779.
  21. Schneider, S., J. M. Kueffer, D. Roessli, and L. Excoffier. 1996. Arlequin: a software package for population genetics. Genetics and biometry Lab., Department of Anthropology, University of Geneva.
  22. Thomson, J. D., D. G. Higgins, and T. J. Gibson. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalities and weight matrix choice. Nucl. Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  23. Vichi, M., M. Zavatarelli, and N. Pinardi. 1998. Seasonal modulation of microbially mediated carbon fluxex in the northern Adriatic Sea. Fish Oceano. 75, 182-190.

Cited by

  1. Comparison of Biological Characteristics of Pacific Cod Gadus microcephalus between the East and Yellow Seas, Korea vol.49, pp.4, 2016, https://doi.org/10.5657/KFAS.2016.0499
  2. Movement of Pacific cod Gadus macrocephalus in the Korean Southeast Sea, ascertained through pop-up archival tags and conventional tags vol.51, pp.4, 2015, https://doi.org/10.3796/KSFT.2015.51.4.624