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Identification of Inhibitory Effect on Streptococcus mutans by Oleanolic Acid
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Among endogenous oral microflora, Streptococcus mutans plays a critical role in dental plaque for-
mation, which mainly contributes to the development of caries and periodontal disease.
Phytochemicals are plant-derived chemical compounds that have been studied as beneficial nutrients
to human health. The purpose of this study was to determine the effects of phytochemicals against
S. mutans. Among them, oleanolic acid (OA) and 5-(hydroxymethyl)-2-furfural (HF) from Thomson
seedless raisins were tested for anti-microbial effects against various clinically important bacteria. OA
inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria. However, HF did not
display any antibacterial effect against any of the strains tested. OA also exhibited inhibitory effects
in surface adherence and biofilm formation of S. mutans. The results suggest that OA can be utilized
as a potential anti-plaque and anti-caries agent by controlling the physiological characteristics of S.
mutans on teeth.
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Introduction

Streptococcus mutans is the principal causative agent of

dental caries, in which lactic acids are produced by bacterial

fermentation of dietary carbohydrates, resulting in the de-

mineralization of the tooth enamel and further dental caries

(Fig. 1). It produces glucosyltransferases (GTFs) that catalyze

the transfer of glucosyl groups from one compound to an-

other, resulting in the formation of glucan which provides

binding site for the adherence of the bacteria to tooth surfa-

ces and is a major contributor of persistant biofilm formation

[1,17].

Phytochemicals, aromatic compound produced by most

fruits and vegetables, include phenols, alkaloids, and

terpenes. Among them, oleanolic acid, an important penta-

cyclic triterpenoid, has been considered as a key pharma-

ceutical substance. This compound and its derivatives have

been known to exhibit a variety of biological activities, in-

cluding anti-inflammatory [5], anti-HIV [9], anti-angio-

genesis [18], anti-mutagenic [2], and gastroprotective and ul-

cer-healing [16] activities. In addition, oleanolic acid was

suggested to display an antibacterial or bactericidal effect

against different bacteria including Mycobacterium tuber-

culosis [8], Streptococcus pneumoniae and methicillin-resistant

Staphylococcus aureus (MRSA) [6].

Recently, researchers showed that highly-concentrated

cranberry polyphenol extract (at the concentration of 500 μg

/ml) inhibited the growth of S. mutans [22]. This finding

brought to launch dental products containing the cranberry

extract as an agent for preventing dental caries in the U.S.

More recently, Thomson seedless raisins were tested for the

possible use as a beneficial food that prevents oral diseases

[25]. Five phytochemicals extracted from the raisins included

oleanolic acid, oleanolic aldehyde, linoleic acid, linolenic acid,

betulin, betulinic acid, and 5-(hydroxymethyl)-2-furfural [25].

Therefore, the aim of the present study was to investigate

the effect of the phytochemicals found in the raisins on S.

mutans and further to emphasize the development to a po-

tential therapeutic agent which controls the growth of vari-

ous oral pathogens.

Materials and Methods

Bacterial strains and culture conditions

Bacterial strains used in this study are listed as follows:

Gram-negative bacteria (Acinetobacter baumannii ATCC19606,

Burkholderia thailandensis E264, Escherichia coli DH5α, Klebsiella
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Fig. 1. Mechanism of generation of dental plaque and decay

by S. mutans. S. mutans metabolizes sucrose to two mon-

osaccharides, glucose and fructose. Glucans are synthe-

sized from glucoses by glucosyltransferases (GTFs) en-

coded by the gtfB, gtfC and gtfD genes, resulting in facili-

tating bacterial adherence to the tooth surface, followed

by dental biofilm formation. In addition, lactic acid is

produced by the fermentation process of the fructose,

thus lowering pH of oral environment, which causes the

tooth demineralization and decay.

pneumoniae ATCC25306 and Pseudomonas aeruginosa PA14)

and Gram-positive bacteria (Enterococcus faecalis ATCC35038,

Enterococcus faecium ATCC19434, Listeria monocytogenes

ATCC15313, Streptococcus mutans ATCC25175 and Streptococcus

sanguinis CUG). The strains were routinely maintained on

brain heart infusion medium (BHI, Difco). Stock solutions

of oleanolic acid (OA, Sigma) and 5-(hydroxymethyl)-2-furfural

(HF, Sigma) were freshly prepared at 4.567 mg/ml (10
-2

mol/l) in 100% dimethyl sulfoxide. These solutions were di-

luted in BHI medium to 1,024 μg/ml for further

experiments.

Determination of minimum inhibitory concentrations

(MICs) of phytochemicals against various clinically

important bacteria

Two-fold serial dilutions of OA and HF were prepared

in fresh BHI medium in 96-well plates. An equal volume

of bacterial inoculum of 5×10
7

CFU was added to each well

on the 96-well plate containing 100 μl of the serially-diluted

drugs. After incubation for 24 hr at 37oC, the MICs were

obtained by observing the optical density at 600 nm by

spectrophotometer.

Biofilm assay

Biofilm formation was assessed by using the slightly

modified protocol of Loo et al [11]. BHI medium containing

1% sucrose was used for biofilm assay. Attached cells were

stained using 1% crystal violet (v/v) for 15 min followed

by rinsing the wells three times with 200 μl of H2O and sol-

ublizing the stained cells in 95% ethanol. Biofilm formation

was quantified by measuring the optical density at 575 nm

by spectrophotometer.

Adherence assay

The bacteria were grown at an angle of 30o in a glass

tube containing 10 ml of BHI medium supplemented with

1% sucrose in the presence of various concentrations of OA.

After growth, unattached cells were removed and attached

cells were collected by adding 0.5 M of sodium hydroxide.

The adherence ability was quantified by measuring the opti-

cal density at 600 nm by spectrophotometer [7].

Statistical Analysis

Optical density data were analyzed by the general linear

model of SAS
®

version 9.2 (SAS Institute, Cary, NC, USA),

and all mean comparisons were performed with the Tukey’s

method at alpha=0.05.

Results and Discussion

OA inhibits the growth of Gram-positive bacteria

The results of MIC values against various bacteria were

shown in Table 1. OA exhibited antimicrobial effects against

all Gram-positive bacteria tested at low concentration of the

compound, but not Gram-negative bacteria. However, HF

did not display any antibacterial activity against all strains

tested in this study. Horiuch research group suggested that

the compounds are not active on Gram-negative bacterium,

including E. coli, P. aeruginosa and Serratia marcescens, due

to the existence of the outer membrane which is equipped

Table 1. MICs of OA and HF against several Gram-negative

and Gram-positive bacteria

Strains
MIC (mg/ml)

OA HF

Gram-negative bacterium

Acinetobacter baumannii ATCC19606

Burkholderia thailandensis E264

Escherichia coli DH5a

Klebsiella pneumoniae ATCC25306

Pseudomonas aeruginosa PA14

＞512

＞512

＞512

＞512

＞512

512

512

＞512

512

512

Gram-positive bacterium

Enterococcus faecalis ATCC35038

Enterococcus faecium ATCC19434

Listeria monocytogenes ATCC15313

Streptococcus mutans ATCC25175

Streptococcus sanguinis CUG

16

2

4

2

2

＞512

＞512

＞512

＞512

512
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with several multidrug efflux pumps [6]. Of the Gram-pos-

itive strains tested in this study, E. faecalis and E. faecium

are commonly isolated from human infections and resistant

to many antimicrobial agents in many cases [19]. Listeria

monocytogenes is a clinically important human pathogen

causing listeriosis with a high fatality rate [21] and has been

reported as an antimicrobial-resistant strain [14]. Therefore,

the discovery of a novel drug will be indispensable to treat

patients suffering with the infection of the drug-resistant en-

terococcal species and L. monocytogenes.

OA significantly suppressed the growth of two common

endogenous oral pathogens, Streptococcus mutans and

Streptococcus sanguinis, suggesting the possibility of the de-

velopment to a potential therapeutic substance originated

from plants to prevent serious dental caries. The results sug-

gest that OA can be utilized as a valuable medical drug to

eliminate the proliferation of clinically important human

pathogens, particularly Gram-positive bacteria.

OA inhibits surface adherence and biofilm formation

of S. mutans

To determine if OA hinders the biofilm formation of S.

mutans on surface, cells were grown on the 96-well poly-

styrene plate containing BHI medium supplemented with

1% sucrose in the presence of various amounts of OA. In

this experiment, sucrose was added to the medium for pro-

viding enough substrate of GTFs, which synthesizes glucan

polymers, key factors in the development of a biofilm [1].

OA solutions ranging from 0 to 256 μg/ml were prepared

by routine two-fold serial dilution method. As shown in Fig.

2, OA inhibited biofilm formation in a dose-dependent man-

ner, that was completely repressed at the concentration of

4 μg/ml of OA.

The level of bacterial adherence to glass surface was ex-

amined in the presence of OA if the compound affects in

vitro adherence of S. mutans to surface. The effects of differ-

ent concentrations of OA on adherence of S. mutans to glass

tubes are shown in Fig. 3. OA significantly reduced the bac-

terial adherence to the glass surface at the concentration of

8 μg/ml by 80%. Adherence ability to glass surface was

slightly higher than the one to polystyrene plates in the ad-

herence assay. The initial adhesion between bacteria and

the surface substrate is governed by the physical properties

of the bacteria and the surface material. Charged bacteria

adhere in more amounts to hydrophilic glass surface than

to hydrophobic polystyrene surface. In addition, adhesion

(A)

(B)

Fig. 2. Inhibitory effect on biofilm formation of S. mutans by

OA. A 5×10
7

CFU amount of S. mutans cells was added

to each well on the 96-well plate containing different

amounts of OA ranging from 0 to 256 μg/ml. The degree

of biofilm formation was performed by staining the cells

with crystal violet (A) and measuring the optical density

at 575 nm (B). abc: means with different letters are differ-

ent (p＜0.05)
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Fig. 3. Anti-adherence activity of OA against S. mutans. The bac-

teria cells were grown at an angle of 30o in a glass tube

in presence of different concentrations of OA ranging

from 0 to 16 μg/ml. Attached cells to the tube were sol-

ublized by adding sodium hydroxide, followed by meas-

uring the optical density of the cells at 600 nm.
ab

: means

with different letters are different (p＜0.05)

increases with increasing contact angle [15,20].

Taken together, the data suggest that OA, quite common

in nature, is capable of suppressing S. mutans associated with

dental caries or periodontal diseases by hindering the

growth of bacterial cells, the dental plaque formation or the

bacterial adherence on the tooth surface.

Previously, it has been reported that OA inhibited pepti-

doglycan metabolism in L. monocytogenes, resulting in the im-
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paired proliferation of the bacterial cells [10]. Therefore, it

is necessary to examine if same mechanism applies to the

case of S. mutans by OA addition.

The GTFs produced by S. mutans are responsible for syn-

thesizing glucan polymers, which plays a critical role in bio-

film formation and cell adhesion [1,17]. Among three GTFs,

GtfB, GtfC and GtfD, the amount of GtfB and GtfC controls

biofilm formation [12]. The expression of the gtfBC operon

encoding two glucosyltransferase enzymes is negatively

governed by a global regulator, CovR [4]. Besides glucan

polymers, glucan-binding proteins (GbpA, GbpB, GbpC, and

GbpD) synthesized by S. mutans have been found to influ-

ence biofilm formation or adhesion [3].

S. mutans also produces autoinducer 2 (AI-2) by which

virulence characteristics of the pathogen are regulated. The

synthesis of the molecule is known to be carried out by the

LuxS enzyme [24]. The loss of the LuxS enzyme was shown

to inhibit biofilm growth in S. mutans [13,23].

Based on the findings explained above, it also will be nec-

essary to determine what molecular mechanism(s) is/are de-

scribed for inhibitory effect of OA on biofilm formation

and/or cell adhesion to surface of S. mutans.

In conclusion, this work represents considerable possi-

bility that OA, found in natural foods, is able to be utilized

as an alternative for prevention and medical treatment of

dental diseases. However, further experiments are required

to understand how OA works on extirpating S. mutans on

tooth.
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초록：Oleanolic acid(OA)의 Streptococcus mutans에 대한 저해효과

윤요한․최경희
1,2
*

(한국원자력연구원 정읍 방사선과학연구소 식품생명공학연구실, 1원광대학교 치과대학 구강미생물학교실,
2
원광대학교 생명공학연구소)

구강에 상주하는 미생물 중, Streptococcus mutans는 충치 및 치주염의 원인인 치아플라그를 형성하는데 중요한

역할을 한다. Phytochemical은 식물에서 추출된 화학성분으로서, 사람의 건강에 유익한 영양물질로서 많은 연구

들이 진행되어왔다. 본 연구는 이 phytochemical이 중요 구강미생물인 S. mutans에 대한 효과를 살펴보았다. 최근

에 Thomson seedless raisin에서 여러 phytochemicals가 추출되었는데, 그 중 oleanolic acid (OA)와

5-(hydroxymethyl)-2-furfural (HF)의 임상적으로 중요한 여러 미생물에 대한 항균활성효과를 확인한 결과, OA가

그람음성균들에게는 항균활성효과가 나타나지 않았고, 그람양성균들에만 항균활성효과를 보였다. 그러나, HF의

경우에는 모든 균주에 대해 항균활성을 나타내지 않았다. 또한, OA는 S. mutans 균주의 표면부착과 생균막의 형

성을 저해하기도 하였다. 따라서, 이 연구결과들은 OA가 치아에 존재하는 S. mutans의 생육 및 여러 생리적 특성

들을 저해하므로 항플라그제나 항충치약으로서의 활용가능성을 확인할 수 있었다.


