DOI QR코드

DOI QR Code

Evaluation of Genetic Diversity among Persimmon Cultivars (Diospyros kaki Thunb.) Using Microsatellite Markers

초위성 마커를 이용한 감(Diospyros kaki Thunb.)의 유연관계 분석

  • Hwang, Ji-Hyeon (Department of Horticultural Bioscience, Pusan National University) ;
  • Park, Yu-Ok (Sweet Persimmon Research Institute, Gyeongnam Agricultural Research & Extension Service) ;
  • Kim, Sung-Churl (Sweet Persimmon Research Institute, Gyeongnam Agricultural Research & Extension Service) ;
  • Lee, Yong-Jae (Department of Horticultural Bioscience, Pusan National University) ;
  • Kang, Jum-Soon (Department of Horticultural Bioscience, Pusan National University) ;
  • Choi, Young-Whan (Department of Horticultural Bioscience, Pusan National University) ;
  • Son, Beung-Gu (Department of Horticultural Bioscience, Pusan National University) ;
  • Park, Young-Hoon (Department of Horticultural Bioscience, Pusan National University)
  • 황지현 (부산대학교 생명자원과학부 원예생명과학과) ;
  • 박여옥 (경상남도 농업기술원 단감연구소) ;
  • 김성철 (경상남도 농업기술원 단감연구소) ;
  • 이용재 (부산대학교 생명자원과학부 원예생명과학과) ;
  • 강점순 (부산대학교 생명자원과학부 원예생명과학과) ;
  • 최영환 (부산대학교 생명자원과학부 원예생명과학과) ;
  • 손병구 (부산대학교 생명자원과학부 원예생명과학과) ;
  • 박영훈 (부산대학교 생명자원과학부 원예생명과학과)
  • Received : 2010.03.30
  • Accepted : 2010.04.09
  • Published : 2010.04.30

Abstract

The genetic diversity among 48 persimmon (Diospyros kaki Thunb.) accessions, indigenous in Korea and introduced from Japan and China, was evaluated by using simple sequence repeat (SSR) markers. From 20 SSR primer sets, a total of 114 polymorphic markers were detected among 12 pollination-constant non-astringent (PCNA), 13 pollination-variant non-astringent (PVNA), 15 pollination-variant astringent (PVA), and 8 pollination-constant astringent (PCA) cultivars. Analysis of pair-wise genetic similarity coefficient (Nei-Li) and unweighted pair-group method with arithmetic averaging (UPGMA) clustering revealed two main clusters and four subclusters for cluster I. The subclustering pattern was in accordance with the classification of persimmon cultivars based on the nature of astringency loss. Phenetic relationships among the subclusters showed a closer relatedness of the PCNA group with the PVNA group, and the PVA with the PCA group. Genetic similarity co-efficiency was 0.499 on average and the highest (0.954) similarity was observed between 'Cheongdo-Bansi' and 'Haman-Bansi'. The similarity was lowest (0.192) between 'Damopan'and 'Atago'. Identification of each cultivar with the execption of 'Cheongdo-Bansi' and 'Gyeongsan-Bansi' was possible based on the SSR fingerprints, suggesting that these SSR markers are a useful tool for protecting intellectual property on newly developed cultivars.

총 20개의 감 SSR primer set을 사용하여 완전단감(PCNA) 12품종, 불완전단감(PVNA) 13품종, 불완전 떫은감(PVA) 15품종, 완전 떫은감(PCA) 8품종 등, 총 48개 유전자원의 유전적 연관성을 분석하였다. 획득된 114개의 다형성 밴드를 이용하여 UPGMA 방식으로 유사도 및 집괴분석을 수행한 결과 48개 품종들은 크게 2개의 그룹(cluster)으로 나뉘어졌으며, 제 1 cluster는 다시 4개의 subcluster를 형성하였다. 이는 탈삽의 특성을 기준으로 분류한 품종군과 대체로 일치 함을 알 수 있고, 품종군간의 유연관계에 있어서는 완전단감군은 불완전 단감군과, 그리고 완전 떫은감은 불완전 떫은감군과 유연관계가 더욱 높은 것으로 관찰되었다. 평균 유사도의 값은 0.499였고 품종간 가장 높은 유사도 값(0.954)를 나타낸 것은 '청도반시'와 '함안반시'였고, 가장 낮은 유사도 값(0.192)를 나타낸 것은 '대마반'과 '애탕'이었다. 본 연구에 사용된 2SSR primer 들은 유럽 감품종으로부터 개발되어 보고되었지만, 일본 및 국내 품종의 연구에서도 효과적으로 사용될 수 있었고, 이들 마커들을 통해, 48개 품종 중 청도반시(Cheongdo-Bansi)와 경산반시(Gyeongsan-Bansi)를 제외한 모든 품종간 구별이 가능하였다. 이는 향후 신품종 개발시 품종보호를 위한 품종 특이적 마커로 효율적으로 사용될 수 있음을 보여준다.

Keywords

References

  1. Baird, W. V., R. E. Ballard, S. Rajapakse, and A. G. Abbott. 1996. Progress in Prunus mapping and application of molecular markers to germplasm improvement. Hort. Science 31, 1099-1106.
  2. Cho, D. H., I. J. Chun, S. T. Kwon., Y. S. Song, and Y. D. Chou. 2007. Genetic Relationships of Korean Astringent Persimmon Varieties Using AFLP Analysis. Kor. J. Hort. Sci. Technol. 25, 114-118.
  3. Cho, S. K. and T. H. Cho. 1965. Studies on the local varieties of persimmon in Korea (in Korea with English summary). Res. Rep. RDA 8, 147-190.
  4. Hagidimitriou, M., A. Katsiotis, G. Menexes, C. Pontikis, and M. Loukas. 2005. Genetic diversity of major Greek olive cultivars using molecular (AFLPs and RAPDs) markers and morphological traits. J. Amer. Sco. Hort. Sci. 130, 21-217.
  5. Helentijaris, T., G. King, M. Slocum, D. Siedenstang, and S. Wegman. 1985. Restriction fragment length polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol. Biol. 5, 109-118. https://doi.org/10.1007/BF00020093
  6. Ikegami, A., A. Kitajima, and K. Yonemori. 2005. Inhibition of flavonoid biosynthetic gene expression coincides with loss of astringency in pollination-constant, no-astringent (PCNA)-type persimmon fruit. J. Hort. Sci. Biotechnol. 80, 225-228.
  7. Ikeda, I., M. Yamada, A. Kurihara, and T. Nishida. 1985. Inheritance of astringency in Japanese persimmon (in Japanese with English Summary). J. Japan. Soc. Hort. Sci. 54, 39-45. https://doi.org/10.2503/jjshs.54.39
  8. Jae, H. J, J. H. Hwang, Y. O. Park, S. C. Kim, Y. J. Lee, B. G. Son, and Y. H. Park, 2009. Evaluation of genetic relationships among persimmon (Diospyros kaki Thunb.) cultivars introduced and indigenous in Korea. Kor. J. Hort. Sci. Technol. 27, 448-455.
  9. Kwon, Y., J. Moon, Y. Kwon, D. Park, W. Yoon, I. Song, and S. Yi. 2003. AFLP analysis for cultivar discrimination in radish and Chinese cabbage. Kor. J. Breed. 35, 319-328.
  10. Kikuchi, A. 1948. Pomology-Part I.(in Japanese), pp. 347-400, Yokendo, Tokyo.
  11. Kim, T. C. 1993. Taxonomic studies of persimmon (Diospyros kaki Thunb) by multivariate and isozyme analyese. Seoul Nat'l. Univ. ph.D. Disser. (in Korean).
  12. Nei, M. and W. H. Lee. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 76, 5296-5273.
  13. Prado, M. J., M. T. Herreara, R. A. Vazquez, S. Rome, and M. V. Gonzalez. 2005. Microprapation of two selected male kiwifruit and analsyis of genetic variation with AFLP markers. HortScience 40, 740-746.
  14. Rohlf, F. J. 2002. NTSYSpc: numerical taxonomy system, version 2.1. Exeter Publishing, Ltd., Setauket, N.Y.
  15. Soriano, J. M., S. Pecchioli, C. Romero, S. Vilanova, G. Llacer, E. Giordani, and M. L. Badenes. 2006. Development of microsatellite markers in polyploid persimmon (Diospyros kaki Lf) from an enriched genomic library. Molecular Ecology Note 6, 368-370. https://doi.org/10.1111/j.1471-8286.2006.01236.x
  16. Williams, M. N. V., N. Pande, S. Nair, M. Mohan, and J. Bennett. 1991. Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryzasativa L.) genomic DNA. Theor. Appl. Genet. 82, 489-498. https://doi.org/10.1007/BF00588604
  17. Yonemori, K. and J. Matsushima. 1985. Property of development of the tannin cells from non-astringent and astringent type fruits of Japanese persimmon (Diospyros kaki) and its relationship to natural astringency. J. Japan. Soc. Hort. Sci. 54, 201-208. https://doi.org/10.2503/jjshs.54.201
  18. Yonemori, K., M. Yamada, and A. Sugiura. 2000. Persimmon genetics and breeding. Plant Breed. Rev. 19, 191-225.

Cited by

  1. Development of EST-SSR Markers and Analysis of Genetic Diversity Using Persimmon (Diospyros kaki Thunb) Cultivars Collecting from Domestic vol.26, pp.4, 2013, https://doi.org/10.7732/kjpr.2013.26.4.491
  2. Discrimination of Cultivars and Cultivation Origins from the Sepals of Dry Persimmon Using FT-IR Spectroscopy Combined with Multivariate Analysis vol.47, pp.1, 2015, https://doi.org/10.9721/KJFST.2015.47.1.20
  3. Development of Sequence Characterized Amplified Region Markers for Cultivar Identification in Persimmon vol.31, pp.6, 2013, https://doi.org/10.7235/hort.2013.13057