DOI QR코드

DOI QR Code

일부 폐금속광산 지역 거주 여성의 요중 비소와 8-hydroxydeoxyguanosine 농도 사이의 관련성

The Relationship between the Urinary Arsenic and 8-Hydroxydeoxyguanosine Levels in Women of Abandoned Mine Area

  • 최영숙 (충북대학교 의과대학 예방의학교실) ;
  • 엄상용 (충북대학교 의과대학 예방의학교실) ;
  • 최병선 (중앙대학교 의과대학 예방의학교실) ;
  • 박정덕 (중앙대학교 의과대학 예방의학교실) ;
  • 김용대 (충북대학교 의과대학 예방의학교실) ;
  • 김헌 (충북대학교 의과대학 예방의학교실)
  • Choi, Young-Sook (Department of Preventive Medicine, Medical Research Institute & College of Medicine, Chungbuk National University) ;
  • Eom, Sang-Yong (Department of Preventive Medicine, Medical Research Institute & College of Medicine, Chungbuk National University) ;
  • Choi, Byoung-Sun (Department of Preventive Medicine, College of Medicine, Chungang University) ;
  • Park, Jung-Duk (Department of Preventive Medicine, College of Medicine, Chungang University) ;
  • Kim, Yong-Dae (Department of Preventive Medicine, Medical Research Institute & College of Medicine, Chungbuk National University) ;
  • Kim, Heon (Department of Preventive Medicine, Medical Research Institute & College of Medicine, Chungbuk National University)
  • 투고 : 2010.01.09
  • 심사 : 2010.04.20
  • 발행 : 2010.04.30

초록

본 연구는 비소에 대한 만성노출이 의심되는 일부 폐금속광산 주변 지역 주민 중 여성들을 대상으로 요중 비소 농도와 산화적 유전자 손상지표인 요중 8-hydroxydeoxyguanosine (8-OHdG) 농도와의 관련성을 평가하기 위해 시행되었다. 충청북도에 위치한 두 폐금속광산 지역 주민 중 여성 165명을 대상으로 요중 비소농도와 요중 8-OHdG의 농도를 측정하고 SPSS 12.0 통계프로그램을 이용하여 분석하였다. 조사 대상자들의 요중 비소농도는 기하평균이 $5.65\;{\mu}g/g$ creatinine으로 나타났으며 요중 비소와 8-OHdG 농도와의 관련성 분석에서는 상관계수 0.399 (p<0.001)의 유의한 상관성을 보였다. 이러한 관련성은 비소노출 농도가 낮은 경우가 노출농도가 높은 경우에 비해 상대적으로 높은 것으로 나타났다. 본 연구의 결과는 요중 8-OHdG 농도가 저농도의 비소에 만성적으로 노출된 여성에서 산화적 유전자 손상을 평가하는 좋은 지표가 될 수 있음을 시사한다.

This study examines the relationship between urinary arsenic concentration and urinary 8-hydroxydeoxyguanosine (8-OHdG) concentrations, an index of oxidative DNA damage, among women who live near abandoned metal mines. The sample consisted of 165 residents living near two abandoned metal mines located in Chungbuk Province. Demographic characteristics as well as environmental factors relevant to arsenic exposure were collected through interviews, and urinary arsenic concentrations and urinary 8-OHdG concentrations of the research subjects were measured. The collected data were subsequently analyzed using the statistics program SPSS 12.0. The geometric average of urinary arsenic concentrations among the research subjects was $5.65\;{\mu}g/g$ creatinine. In a correlation analysis between urinary arsenic and 8-OHdG concentrations, the correlation coefficient was significant (p<0.001) at 0.399. This study suggests that urinary 8-OHdG concentrations may be a DNA damage marker for chronic arsenic exposure in women.

키워드

참고문헌

  1. Abernathy, C. O., D. J. Thomas, and R. L. Calderon. 2003. Health effects and risk assessment of arsenic. J. Nutr. 133, 1536S-1538S.
  2. Buchet, J. P., J. Pauwels, and R. Lauwerys. 1994. Assessment of exposure to inorganic arsenic following ingestion of marine organisms by volunteers. Environ. Res. 66, 44-51. https://doi.org/10.1006/enrs.1994.1043
  3. Chung, C. J., C. J. Huang, Y. S. Pu, C. T. Su, Y. K. Huang, Y. T. Chen, and Y. M. Hsueh. 2008. Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area. Toxicol. Appl. Pharmacol. 226, 14-21. https://doi.org/10.1016/j.taap.2007.08.021
  4. Cohen, S. M., L. L. Arnold, M. Eldan, A. S. Lewis, and B. D. Beck 2006. Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit. Rev. Toxicol. 36, 99-133. https://doi.org/10.1080/10408440500534230
  5. Devesa, V., D. Vélez, and R. Montoro. 2008. Effect of thermal treatments on arsenic species contents in food. Food Chem. Toxicol. 46, 1-8. https://doi.org/10.1016/j.fct.2007.08.021
  6. Florea, A. M. and D. Büsselberg. 2006. Occurrence, use and potential toxic effects of metals and metal compounds. Biometals 19, 419-427. https://doi.org/10.1007/s10534-005-4451-x
  7. Fulladosa, E., J. C. Murat, J. C. Bollinger, and I. Villaescusa. 2007. Adverse effects of organic arsenical compounds towards Vibrio fischeribacteria. Sci. Total Environ. 377, 207-213. https://doi.org/10.1016/j.scitotenv.2006.12.044
  8. Huang, M., S. J. Choi, D. W. Kim, N. Y. Kim, C. H. Park, S. D. Yu, D. S. Kim, K. S. Park, J. S. Song, H. Kim, B. S. Choi, I. J. Yu, and J. D. Park. 2009. Risk assessment of low-level cadmium and arsenic on the kidney. J. Toxicol. Environ. Health A. 72, 1493-1498. https://doi.org/10.1080/15287390903213095
  9. Kapaj, S., H. Peterson, K. Liber, and P. Bhattacharya. 2006. Human health effects from chronic arsenic poisoning--a review. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 41, 2399-2428. https://doi.org/10.1080/10934520600873571
  10. Lindback, B. and A. Bergman. 1989. A new commercial method for the enzymatic determination of creatinine in serum and urine evaluated: comparison with a kinetic Jaffe method and isotope dilution-mass spectrometry. Clin. Chem.35, 835-837.
  11. Oremland, R. S. and J. F. Stolz. 2003. The ecology of arsenic. Science 300, 939-944. https://doi.org/10.1126/science.1081903
  12. Pi, J., H. Yamauchi, Y. Kumagai, G. Sun, T. Yoshida, H. Aikawa, C. Hopenhayn-Rich, and N. Shimojo. 2002. Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ. Health Perspect. 110, 331-336. https://doi.org/10.1289/ehp.02110331
  13. Pilger, A. and H. W. Rüdiger. 2006. 8-Hydroxy-2'-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int. Arch. Occup. Environ. Health 80, 1-15. https://doi.org/10.1007/s00420-006-0106-7
  14. Singh, N., D. Kumar, and A. P. Sahu. 2007. Arsenic in the environment: effects on human health and possible prevention. J. Environ. Biol. 28, 359-365.

피인용 문헌

  1. Urinary oxidative stress biomarkers among local residents measured 6 years after the Hebei Spirit oil spill vol.580, 2017, https://doi.org/10.1016/j.scitotenv.2016.12.044