DOI QR코드

DOI QR Code

Paclitaxel Induced Caspase-Independent Mitotic Catastrophe in Rabbit Articular Chondrocyte

Paclitaxel에 의한 관절연골 세포의 capase-비의존적 mitotic catastrophe 유도

  • Im, Jeong-Hee (Department of Biological Sciences, College of Natural Sciences, Kongju National University) ;
  • Kim, Song-Ja (Department of Biological Sciences, College of Natural Sciences, Kongju National University)
  • 임정희 (국립공주대학교 자연과학대학 생명과학과) ;
  • 김송자 (국립공주대학교 자연과학대학 생명과학과)
  • Received : 2010.01.06
  • Accepted : 2010.04.24
  • Published : 2010.04.30

Abstract

Paclitaxel is known as a potent inhibitor of microtubule depolymerization. It leads to mitotic arrest and cell death by stabilizing the spindle in various cell types. Here, we investigated the effects of paclitaxel on the proliferation and cell death of rabbit articular chondrocytes. Paclitaxel inhibited proliferation in a dose- and time- dependent manner, determined by MTT assay in rabbit articular chondrocytes. We also established paclitaxel-induced G2/M arrest by fluorescent activated cell sorter (FACS) analysis. Paclitaxel increased expression of cyclin B, p53 and p21, while reducing expression of cdc2 and cdc25C in chondrocytes, as detected by Western blot analysis. Interestingly, paclitaxel showed the mitotic catastrophe that leads to abnormal nucleus division and cell death without DNA fragmentation through activation of caspase. Cell death by mitotic catastrophe in cells treated with paclitaxel was suppressed by inhibiting G1/S arrest with 2 mM thymidine. These results demonstrate that paclitaxel induces cell death via mitotic catastrophe without activation of casepase in rabbit articular chondrocytes.

Paclitaxel은 미세소관의 탈중합을 억제하는 시약으로 알려져 있다. Paclitaxel은 다양한 세포에서 세포 내 방추체를 안정화시킴으로써 유사분열 억제 및 세포사멸을 유도한다. 본 실험에서는 토끼 관절 연골세포에서 paclitaxel이 연골세포의 증식과 사멸에 미치는 효과에 대한 연구를 수행하였다. MTT assay를 수행한 결과 paclitaxel은 연골세포에서 농도 의존적으로 세포 증식을 억제한다는 것을 확인 할 수 있었으며, FACS analysis와 Western blot analysis를 수행한 결과, paclitaxel이 G2/M 정지를 유도하는 것을 확인하였다. 또한, paclitaxel이 비정상적인 세포 분열유도와 핵 단편분절 유도없이 일어나는 mitotic catastrophe 즉, caspase-3 비의존적인 세포사멸을 유도하였다. Paclitaxel을 처리한 세포에서 일어나는 이러한 mitotic catastrophe에 의한 세포 죽음은 G1/S기의 진행을 억제하는 시약인 thymidine을 처리하는 것에 의해 억제되는 것을 확인할 수 있었다. 이러한 결과를 종합해 볼 때, paclitaxel에 의한 토끼 관절 연골 세포에서의 세포 죽음은 caspase-3 비의존적인 mitotic catastrophe에 의해 일어나는 것으로 사료되어진다.

Keywords

References

  1. Bhalla, K., A. M. Ibrado, E. Tourkina, C. Tang, M. E. Mahoney, and Y. Huang. 1993. Paclitaxel induced internucleosomal DNA fragmentation associated with programmed cell death in human myeloid leukemia cells. Leukemia 7, 563-568.
  2. Blagosklonny, M. V. 2002. p53: an ubiquitous target of anticancer drugs. Int. J. Cancer 98, 161-166. https://doi.org/10.1002/ijc.10158
  3. Casenghi, M., P. Meraldi, U. Weinhart, P. I. Duncan, R. Korner, and E. A. Nigg. 2003. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5, 113-125. https://doi.org/10.1016/S1534-5807(03)00193-X
  4. Castedo, M., J. L. Perfettini, T. Roumier, K. Andreau, R. Medema, and G. Kroemer. 2004. Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825-2837. https://doi.org/10.1038/sj.onc.1207528
  5. Danesi, R., W. D. Figg, E. Reed, and C. E. Myers. 1995. Paclitaxel inhibits isoprenylation and induces apoptosis in PC-3 prostate cancer cells. Mol. Pharmcol. 47, 1106-1111.
  6. Donaldson, K. L., G. Goolsby, P. A. Kiener, and A. F. Wahl. 1994. Activation of p34cdc2 coincident with taxol-induced apoptosis. Cell Growth Differ. 5, 1041-1050.
  7. Erenpreisa, J. E., A. Ivanov, G. Dekena, A. Vitina, R. Krampe, T. Freivalds, G. Selivanova, and H. I. Roach. 2000. Arrest in metaphase and anatomy of mitotic catastrophe: mild heat shock in two human osteosarcoma cell lines. Cell Biol. Int. 24, 61-70. https://doi.org/10.1006/cbir.1999.0466
  8. Fang, L., L. Shen, Y. Fang, Y. Hu, Q. He, and B. Yang. 2008. MZ3 can induce G2/M-phase arrest and apoptosis in human leukemia cells. J. Cancer Res. Clin. Oncol. 134, 1337-1345. https://doi.org/10.1007/s00432-008-0416-0
  9. Firestein, G. S., M. Yeo, and N. J. Zvaifler. 1995. Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest. 96, 1631-1638. https://doi.org/10.1172/JCI118202
  10. Hagting, A., C. Karlsson, P. Clute, M. Jackman, and J. Pines. 1998. MPF localization is controlled by nuclear export. EMBO J. 17, 4127-4138. https://doi.org/10.1093/emboj/17.14.4127
  11. Henley, D., M. Isbill, R. Fernando, J. S. Foster, and J. Wimalasena. 2007. Paclitaxel induced apoptosis in breast cancer cells requires cell cycle transit but not Cdc2 activity. Cancer Chemother. Pharmacol. 59, 235-249. https://doi.org/10.1007/s00280-006-0262-1
  12. Horwitz, S. B. 1992. Mechanism of action of taxol. Trends Pharmacol. Sci. 13, 134-136. https://doi.org/10.1016/0165-6147(92)90048-B
  13. Hui, A., G. V. Kulkarni, W. L. Hunter, C. A. McCulloch, and T. F. Cruz. 1997. Paclitaxel selectively induces mitotic arrest and apoptosis in proliferating bovine synoviocytes. Arthritis Rheum. 40, 1073-1084. https://doi.org/10.1002/art.1780400612
  14. Im, J. H. and S. J. Kim. 2009. Paclitaxel suppress dedifferentiation via mitogen-activated protein kinase pathway in rabbit articular chondrocyte. Korean J. Biomed. Lab. Sci. 15, 67-72.
  15. Im, J. H. and S. J. Kim. 2009. Paclitaxel stimulate cyclooxygenase-2 expression via MAP kinase pathway in rabbit articular chondrocyte. Korean J. Biomed. Lab. Sci. 15, 141-146.
  16. Ireland, C. M. and S. M. Pitman. 1995. Tubulin alteration in taxol-induced apoptosis parallel those observed with other drugs. Biochem. Pharmacol. 49, 1491-1499. https://doi.org/10.1016/0006-2952(95)00030-4
  17. Jackson, J. R., D. R. Patrick, M. M. Dar, and P. S. Huang. 2007. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer 7, 107-117. https://doi.org/10.1038/nrc2049
  18. Kawabe, T. 2004. G2 checkpoint abrogators as anticancer drugs. Mol. Cancer Ther. 3, 513-519.
  19. Kim, S. J., H. G. Kim, C. D. Oh, S. G. Hwang, W. K. Song, Y. J. Yoo, S. S. Kang, and J. S. Chun. 2002. p38 kinase-dependent and -independent Inhibition of protein kinase C zeta and -alpha regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J. Biol. Chem. 277, 30375-30381. https://doi.org/10.1074/jbc.M205193200
  20. Kim, S. J., S. G. Hwang, D. Y. Shinm, S. S. Kang, and J. S. Chun. 2002. p38 kinase regulates nitric oxide-induced apoptosis of articular chondrocytes by accumulating p53 via NF kappa B-dependent transcription and stabilization by serine 15 phosphorylation. J. Biol. Chem. 277, 33501-33508. https://doi.org/10.1074/jbc.M202862200
  21. Kim, S. J., S. G. Hwang, I. C. Kim, and J. S. Chun. 2003. Actin cytoskeletal architecture regulates nitric oxide-induced apoptosis, dedifferentiation, and cyclooxygenase-2 expression in articular chondrocytes via mitogen-activatedprotein kinase and protein kinase C pathways. J. Biol. Chem. 278, 42448-42456. https://doi.org/10.1074/jbc.M304887200
  22. King, K. L. and J. A. Cidlowski. 1995. Cell cycle and apoptosis: common pathways to life and death. J. Cell Biochem. 58, 175-180. https://doi.org/10.1002/jcb.240580206
  23. Knippschild, U., M. Oren, and W. Deppert. 1996. Abrogation of wild-type p53 mediated growth-inhibition by nuclear exclusion. Oncogene 12, 1755-1765.
  24. Krysko, D. V., T. Vanden Berghe, K. D'Herde, and P. Vandenabeele. 2008. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44, 205-221. https://doi.org/10.1016/j.ymeth.2007.12.001
  25. Kumagai, A. and W. G. Dunphy. 1991. The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell 64, 903-914. https://doi.org/10.1016/0092-8674(91)90315-P
  26. Mansilla, S., W. Priebe, and J. Portugal. 2006. Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 5, 53-60. https://doi.org/10.4161/cc.5.1.2267
  27. Miyashita, T. and J. C. Reed. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299. https://doi.org/10.1016/0092-8674(95)90412-3
  28. Moll, U. M., G. Riou, and A. J. Levine. 1992. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Natl. Acad. Sci. 89, 7262-7266. https://doi.org/10.1073/pnas.89.15.7262
  29. Nogales, E., F. J. Medrano, G. P. Diakun, G. R. Mant, E. Towns-Andrews, and J. Bordas. 1995. The effect of temperature on the structure of vinblastine-induced polymers of purified tubulin: detection of a reversible conformational change. J. Mol. Biol. 254, 416-430. https://doi.org/10.1006/jmbi.1995.0628
  30. Polyak, K., Y. Xia, J. L. Zweier, K. W. Kinzler, and B. A. Vogelstein. 1997. A model for p53-induced apoptosis. Nature 389, 300-305. https://doi.org/10.1038/38525
  31. Scatena, C. D., Z. A. Stewart, D. Mays, L. J. Tang, C. J. Keefer, S. D. Leach, and J. A. Pietenpol. 1998. Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and Taxol-induced growth arrest. J. Biol. Chem. 273, 30777-30784. https://doi.org/10.1074/jbc.273.46.30777
  32. Shenberger, J. S. and P. S. Dixon. 1999. Oxygen induces S-phase growth arrest and increases p53 and p21(WAF1/CIP1) expression in human bronchial smooth-muscle cells. Am. J. Respir. Cell Mol. Biol. 21, 395-402. https://doi.org/10.1165/ajrcmb.21.3.3604
  33. Strausfeld, U., J. C. Labbé, D. Fesquet, J. C. Cavadore, A. Picard, K. Sadhu, P. Russell, and M. Dorée. 1991. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 351, 242-245. https://doi.org/10.1038/351242a0
  34. Taylor, W. R. and G. R. Stark. 2001. Regulation of the G2/M transition by p53. Oncogene 20, 1803-1815. https://doi.org/10.1038/sj.onc.1204252
  35. Tesniere, A., T. Panaretakis, O. Kepp, L. Apetoh, F. Ghiringhelli, L. Zitvogel, and G. Kroemer. 2008. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ. 15, 3-12. https://doi.org/10.1038/sj.cdd.4402269
  36. Theodoropoulos, P. A., H. Polioudaki, O. Kostaki, S. P. Derdas, V. Georgoulias, C. Dargemont, and S. D. Georgatos. 1999. Taxol affects nuclear lamina and pore complex organization and inhibits import of karyophilic proteins into the cell nucleus. Cancer Res. 59, 4625-4633.
  37. Vakifahmetoglu, H., M. Olsson, and B. Zhivotovsky. 2008. Death through a tragedy: mitotic catastrophe. Cell Death Differ. 15, 1153-1162. https://doi.org/10.1038/cdd.2008.47
  38. Wani, M. C., H. L. Taylor, M. E. Wall, P. Coggon, and A. T. McPhail. 1971. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325-2327. https://doi.org/10.1021/ja00738a045
  39. Wiernik, P. H., E.L. Schwartz, J. J. Strauman, J. P. Dutcher, R. B. Lipton, and E. Paietta. 1987. Phase I clinical and pharmacokinetic study of taxol. Cancer. Res. 47, 2486-2493.
  40. Wood, K., W. D. Cornwell, and J. R. Jackson. 2001. Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol. 1, 370-377. https://doi.org/10.1016/S1471-4892(01)00064-9

Cited by

  1. A methyl jasmonate derivative, J-7, induces apoptosis in human hepatocarcinoma Hep3B cells in vitro vol.24, pp.7, 2010, https://doi.org/10.1016/j.tiv.2010.08.001