과제정보
연구 과제 주관 기관 : Korea Science and Engineering Foundation (KOSEF)
참고문헌
- Akiba, S., Y. Kimura, K. Yamamoto, and H. Kumagai. 1995. Purification and characterization of a-protease-resistant cellulose from Aspergillus niger. J. Ferment. Bioeng. 79, 125-130. https://doi.org/10.1016/0922-338X(95)94078-6
- Azevedo, H., D. Bishop, and A. Cavaco-Paulo. 2000. Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulonwnas fimi). Enzyme Microb. Technol. 27, 325-329. https://doi.org/10.1016/S0141-0229(00)00205-2
- Back, S. C. and Y. J. Kwon. 2007. Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol. Bioprocess Eng. 12, 404-409. https://doi.org/10.1007/BF02931063
- Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros. 2009. Ethanol from ligoncelulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromeces marxianus CECT 10875. Process Biochem. 39, 1843-1848. https://doi.org/10.1016/j.procbio.2003.09.011
- Boyer, M. H, J. P. Chambost, M. Magnan, and J. Cattaneo. 1984. Carboxymethyl-cellulase from Erwinia chrysanthermi. II. purification and partial characterization of an endo-B-1,4-glucanase. J. Biotechnol. 1, 241-252. https://doi.org/10.1016/0168-1656(84)90009-9
- Cavaco-Paulo, A. 1998. Mechanism of cellulase action in textile processes. Carbohydr. Polymers 37, 273-277. https://doi.org/10.1016/S0144-8617(98)00070-8
- Chun, J. 1995. Computer-assisted classification and identification of actinomycestes. Ph. D. Thesis, University of Newcastle, Newcastle upon Tyne, UK.
- Delmer, D. P. and C. H Haigler. 2002. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metabol. Eng. 4, 22-28. https://doi.org/10.1006/mben.2001.0206
- Emtiazi, G. and I. Nahvi. 2000. Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy 19, 31-37. https://doi.org/10.1016/S0961-9534(00)00015-5
- Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59, 257-268. https://doi.org/10.1351/pac198759020257
- Golias, H., G. J. Dumsday, G. A. Stanley, and N. B. Pamment. 2000. Characteristics of cellulase preparation affecting the simultaneous saccharification and fermentation of cellulose to ethanol. Biotechnol. Lett. 26, 617-621.
- Howard, R. L., E. Abotsi, E. L. J. von Rensburg, and S. Howard. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2, 602-619.
- Ito, S. 1997. Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles 1, 61-66. https://doi.org/10.1007/s007920050015
- Kim, B. K., B. H Lee, Y. J. Lee, I. H Jin, C. H. Chung, and J. W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44, 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
-
Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004. Cold-active estrase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly
$\rightarrow$ Pro substitution near the active site on its catalytic activity and stability. Biochem. Biophy. Acta 1696, 59-65. https://doi.org/10.1016/j.bbapap.2003.09.008 - Kumar, S., K. Tamura, and N. Nei. 1993. MEGA: Molecular evolutionary genetic analysis. Version 1.01. The Pennsylvania State University. University Park, USA.
- Kundu, R. K., S. Dube, and D. K. Dube. 1988. Extracellular cellulolytic enyzme system of Aspergillus japnicus: 3. isolation, purification, and characterization of multiple forms of endoglucanase. Enzyme Microb. Technol. 10, 100-109. https://doi.org/10.1016/0141-0229(88)90005-1
- Lamed, R., J. Tormo, A. J. hirino, E. Morag, and E. A. Bayer. 1994. Crystallization and preliminary X-ray analysis of the major cellulose-binding domain of the cellulase from Clostridiumthermo eellum. J. Mol. Bioi. 244, 236-237. https://doi.org/10.1006/jmbi.1994.1721
- Lee, B. H, B. K. Kim, Y. J. Lee, C. H Chung, and J. W. Lee. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 46, 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
- Lee, S. M. and Y. M. Koo. 2001. Pilot-scale production of cellulose using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbial. Biotechnol. 11, 229-233.
- Lee, Y. J., B. K. Kim, B. H Lee, K. I. Jo, N. K. Lee, C. H. Chung, Y. C. Lee, and J. W. Lee. 2008. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresource Technol. 99,378-386. https://doi.org/10.1016/j.biortech.2006.12.013
- Liu, J. and W. Xia. 2006. Purification and characterization of a bifunctional enzyme with chotisanase and cellulose activity from commercial cellulose. Biochem. Eng J. 30, 82-87. https://doi.org/10.1016/j.bej.2006.02.005
- Mackenzie, L. F., G. Sulzenbacher, C. Divne, T. A. Jones, H. F. Woldike, M. Schulein, S. G. Withers, and G. J. Davies. 1998. Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2 A resolution and identification of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate. Biochem. J. 335, 409-416.
- Maeadza, C., R. Hatti-Kaul, R Zvauya, and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177-187. https://doi.org/10.1016/S0168-1656(00)00305-9
- Miller, G .. , L. Blum, R. Glennon, and A. L. Burton. 1960. surement of carboxymethylcellulase activity. Anal. Biochem. 2, 127-132.
- Murashima, K., T. Nishimura, Y. Nakamura, J. Koga. T. Moriya, N. Sumida, T. Yaguchi, and T. Kono. 2002. Purification and characterization of new endo-1,4-B-D-glucanases from Rhizopus oryzae. Enzyme Microb. Technol. 30, 319-326. https://doi.org/10.1016/S0141-0229(01)00513-0
- Nandakumar, M. P., M. S. Thankur, K. S. M. S. Raghavarao, and N. P. Ghildyal. 1994. Mechanism of solid particle degradation by Aspergillus niger in solid state fermentation. Process Biochem. 29, 545-551. https://doi.org/10.1016/0032-9592(94)80016-2
- Okolo, J. C., S. K. C. Obi, and F. J. C. Odibo. 1998. Purification and characterization of two distinct carboxymethylcellulases of Paecilomyces sp. Bioresource Technol. 66, 231-234. https://doi.org/10.1016/S0960-8524(98)00053-4
- Parra, L. P., F. Reyes, J. P. Acevedo, O. Salazar, B. A. Andrews, and J. A. Asenjo. 2008. Cloning and fusion expression of a cold-active lipase from marine Antarctic origin. Enzyme Microb. Technol. 42, 371-377. https://doi.org/10.1016/j.enzmictec.2007.11.003
- Resmussnen, R S. and M. T. Morrissey. 2007. Marine biotechnology for production of food ingredients. Adv. Food Nut. Res. 52, 237-292. https://doi.org/10.1016/S1043-4526(06)52005-4
- Roboson, L. M. and G. H Chambliss. 1989. Celluases of bacterial origin. Enzyme Microb. Technol. 11, 626-644. https://doi.org/10.1016/0141-0229(89)90001-X
- Seo, H. P., C. W. Son, C. H Chung, D. I. Jung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee. 2004. Production of high molecular weight pullulan by Aureobasidium pullulans HP-2001 with soybean pomace as a nitrogen source.Bioresource Technol. 95, 293-299. https://doi.org/10.1016/j.biortech.2003.02.001
- Takagi, M., S. Abe, S. Suzuki, G. H Emert, and N. Yata. 1977. A method for production of ethanol directly from cellulose using cellulase and yeast, pp. 551-571, In Ghose, T. K. (ed.), Proceedings of Bioconversion Symposium, Delhi, India.
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Thongekkaew, J., H. Ikeda, K. Masaki, and H. Iefuji. 2008. An acidic and fhermostable carboxymethylcellulase from fhe yeast Cryptacaccussp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichi a pastaris. Protein Expres. Purif. 60, 140-146. https://doi.org/10.1016/j.pep.2008.03.021
- Weisburg. W. G., S. M. Barns, D. A. Pelletire, and D. J. Lane. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacterial. 173, 697-703.
- Woo, S. M. and S. D. Kim. 2007. Confirmation of non-side-rophore antifungal substance and cellulase from Bacillus lichenifarmis K11 containing antagonistic ability and plant growth promoting activity. J. Life Sci. 17, 983-989. https://doi.org/10.5352/JLS.2007.17.7.983
-
Yi, J. C., J. C. Sandra, A. B. John, and T. C. Shu. 1999. Production and distribution of endoglucanase, cellobiohydrolase, and
$\beta$ -glucosidase components of fhe cellulolytic system of Valvariella valvacea, the edible straw mushroom. Appl. Environ. Microbial. 65, 553-559. - Zhang. Y. H. P. and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biatechnal. Biaeng. 88, 797-824. https://doi.org/10.1002/bit.20282
피인용 문헌
- Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen vol.20, pp.1, 2015, https://doi.org/10.1007/s12257-014-0486-6
- Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen vol.52, pp.9, 2014, https://doi.org/10.1007/s12275-014-4156-3
- Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical methods vol.29, pp.3, 2012, https://doi.org/10.1007/s11814-011-0192-4
- Rapid Statistical Optimization of Cultural Conditions for Mass Production of Carboxymethylcellulase by a Newly Isolated Marine Bacterium, Bacillus velezensis A-68 from Rice Hulls vol.23, pp.6, 2013, https://doi.org/10.5352/JLS.2013.23.6.757
- Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry vol.22, pp.10, 2012, https://doi.org/10.5352/JLS.2012.22.10.1295
- Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor vol.22, pp.2, 2017, https://doi.org/10.1007/s12257-017-0035-1
- Statistical optimization of fermentation conditions and comparison of their influences on production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using orthogonal array method vol.16, pp.3, 2011, https://doi.org/10.1007/s12257-010-0457-5
- Statistical Optimization for Production of Carboxymethylcellulase from Rice Hulls by a Newly Isolated Marine Microorganism Bacillus licheniformis LBH-52 Using Response Surface Method vol.21, pp.8, 2011, https://doi.org/10.5352/JLS.2011.21.8.1083
- Enhanced purification of histidine-tagged carboxymethylcellulase produced by Escherichia coli BL21/LBH-10 and comparison of its characteristics with carboxymethylcellulase without histidine-tag pp.1573-4978, 2019, https://doi.org/10.1007/s11033-019-04647-4