Effects of Rice Straw Application and Green Manuring on Selected Soil Physical Properties and Microbial Biomass Carbon in No-Till Paddy Field

무경운 답에서 토양 물리성과 미생물 생체량 탄소 함량에 미치는 녹비작물 시용효과

  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ahn, Byung-Koo (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Lee, Jin-Ho (Department of Bioenvironmental Chemistry, College of Agricultural and Life Sciences, Chonbuk National University)
  • 이영한 (경상남도농업기술원) ;
  • 안병구 (전라북도농업기술원) ;
  • 이진호 (전북대학교 농업생명과학대학 생물환경화학과)
  • Received : 2009.12.22
  • Accepted : 2010.01.06
  • Published : 2010.02.28

Abstract

Applications of plant residues and green manures generally improve the properties of soil under conventional farming system. Therefore, we investigated the improvement of selected soil physical properties, bulk density, porosity, and water content, soil penetration resistance, and soil microbial biomass carbon (SMBC) content as affected by different management practices: 1) conventional tillage without rice straw or green manure crop treatment (TNT, check plot), 2) no-tillage amended with rice straw (NTRS), 3) no-tillage amended with rye (NTR), 4) no-tillage amended with Chinese milk vetch (NTCMV), 5) no-tillage without rice straw or green manure crop treatment (NTNT), The values of bulk density, porosity, and water content ranged from 1.22 to 1.37 Mg $m^3$, from 48.3 to 54.0%, and from 35.0 to 40.2%, respectively. The management practices might positively influence the changes in the selected soil properties, especially in the second experimental year. The soil penetration resistance and SMBC content were also improved after applying rice straw and green manure crops as comparing with TNT. Therefore, applications of the rice straw and green manure crop management practices under no-tillage system positively influenced soil physical properties and soil microbial activities in paddy field.

벼 유기농업은 한국에서 빠르게 확산되고 있다. 유기재배에서 벼 생육은 토양 물리적 특성과 토양 미생물의 기능에 크게 의존한다. 본 연구는 무경운 답에서 유기농업을 위하여 토양 물리성과 미생물 생체량에 미치는 녹비작물의 효과를 검토하였다. 시험구는 무경운, 무경운+볏짚, 무경운+호밀, 무경운+자운영 그리고 경운구를 3반복으로 죽곡통에서 2005년 5월에서 2006년 10월까지 수행하였다. 경운구는 2005년과 2006년 모두 토양 가밀도가 가장 높은 반면 공극률은 가장 낮았다. 무경운+호밀 처리구는 공극률이 가장 높았으며 무경운 처리구의 표토 관입저항은 경운구 보다 낮았다. 담수 전 2005년과 2006년 토양 미생물 생체량 탄소 함량은 무경운+자운영 처리구가 477 mg $kg^{-1}$ 및485 mg $kg^{-1}$으로 가장 높았고 무경운+호밀 처리구는 413 mg $kg^{-1}$ 및 484 mg $kg^{-1}$였으며 경운 처리구는 363 mg $kg^{-1}$ 및 445 mg $kg^{-1}$을 나타냈다. 시기적으로 토양 미생물 생체량 탄소 함량은 유수형성기에 낮아지는 경향이었다. 연구결과 녹비작물을 시용한 무경운 재배기술은 경운에 비해 토양 공극률과 토양 미생물 생체량 탄소 함량을 크게 개선하였다.

Keywords

References

  1. Blake, G.R., and K.H. Hartage. 1986a. Bulk density. P. 363-375. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA, and SSSA, Madison WI.
  2. Blake, G.R., and K.H. Hartage. 1986a. Bulk density. P. 363-375. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA, and SSSA, Madison WI.
  3. Blevins, R.L., G.W. Thomas, M.S. Mith, W.W. Frye, and P.L. Conelius. 1983. Changes in soil properties after 10 years no-tilled and conventionally tilled corn. Soil Till. Res. 3:135–146.
  4. Busscher, W.J., P.J. Bauer, C.R. Camp, and R.E. Sojka. 1997. Correction of cone index for soil water content differences in a coastal plain soil. Soil Till. Res. 43:205-217. https://doi.org/10.1016/S0167-1987(97)00015-9
  5. Cannell, R.Q., F.B. Ellis, D.G. Christian, J.P. Gram, and J.T. Douglas. 1980. The growth and yield of winter cereals after direct drilling, shallow cultivation, and ploughing on non-calvareous clay soils, 1974-8. J. Agric. Sci. Camb. 94:345-359 https://doi.org/10.1017/S0021859600028951
  6. Cassel, D.K. 1982. Tillage effects on soil bulk density and mechanical impedance. p. 45–67. In P.W. Unger and D.M. Van Doren (ed.) Predicting tillage effects on soil physical properties and processes. ASA Spec. Publ. 44. ASA and SSSA, Madison, WI.
  7. Costamagna, O.A., R.K. Stivers, H.M. Galloway, and S.A. Barber. 1982. Three tillage systems affect selected properties of a tilled naturally poor-drained soil. Agron. J. 74:442-446. https://doi.org/10.2134/agronj1982.00021962007400030010x
  8. Crovetto, C.C.. 1998. No-till development in Chequen farm and its influence on some physical, chemical and biological parameters. J. Soil Water Conserv. 53:194-199.
  9. Dabney, S.M., G.V. Wilson, K.C. McGregor, and G.R. Foster. 2004. History, residue, and tillage effects on erosion of loessial soil. Trans ASAE 47:767-775. https://doi.org/10.13031/2013.16108
  10. Dobermann, A. and T.H. Fairhurst. 2002. Rice straw management. Better Crop International, Special Supplement, 16:7-11.
  11. Ellis, F.B., J.G. Elliott, F. Pollard, R.Q. Cannell, and B.Y. Barnes. 1979. Comparison of direct drilling reduce cultivation and ploughing on growth of cereals. 3. Winter wheat and spring barley on a calcareous clay. J. Agric. Sci. Camb. 93:391-401. https://doi.org/10.1017/S0021859600038077
  12. Follett, R.F., Peterson, G.A. 1988. Surface soil nutrient distribution as affected by wheat-fallow tillage systems. Soil Sci. Soc. Am. J. 52, 141–147.
  13. Gantzer, C.J., and G.R. Blake. 1978. Physical characteristics of Le Sueur clay loam soil following no-till and conventional tillage. Agron. J. 70:853-857. https://doi.org/10.2134/agronj1978.00021962007000050035x
  14. Juergens, L.A., D.L. Young, W.F. Schillinger, and H.R. Hinman. 2004. Economics of alternative no-till spring crop rotations in Washington's wheat-fallow region. Agron. J. 96:154-158. https://doi.org/10.2134/agronj2004.0154
  15. Karamanos, A.J., D. Bilalis, and N. Sidiras. 2004. Effects of reduced tillage and fertilization practices on soil characteristics, plant water status, growth and yield of upland cotton. J. Agron. Crop Sci. 190:262-276. https://doi.org/10.1111/j.1439-037X.2004.00101.x
  16. Lampurlanes, J., and C. Cantero-Martinez. 2003. Soil bulk density and penetration resisyance under different tillage and crop management systems and their relationship with barley root growth. Agron. J. 95:526-536. https://doi.org/10.2134/agronj2003.0526
  17. Lee, Y.H., D. Son, and Z.R. Choe. 2009. Effects of rice-winter cover crops cropping systems on the rice yield and quality in no-tillage paddy field. Korean J. Environ. Agri. 28(1): 53-58. https://doi.org/10.5338/KJEA.2009.28.1.053
  18. Mac Rae, R.Y., and G.R. Mehuys. 1985. The effect of green manuring on the physical properties of temperate area soils. Adv. Soil Sci., Vol. 3. Springer-Verlag, Inc., NY, pp71-94.
  19. Moran, C.J., A.J. Koppi, B.W. Murphy, and A.B. McBrantney. 1988. Comparison of the macropore structure of a sandy loam surface soil horizon subjected to two tillage treatments. Soil Use Manage. 4:96-102. https://doi.org/10.1111/j.1475-2743.1988.tb00743.x
  20. Paustian, K., Collins, H.P., and Paul, E.A. 1997. Management controls in soil carbon. In: Paul, E.A., Paustian, K., Elliott, E.T., Cole, C.V. (Eds.), Soil Organic Matter in Temperate Ecosystems: Long Term Experiments in North America. CRC Press, Boca Rotan, FL, pp. 15–49.
  21. Pidgeon, J.D., and B.D. Soane. 1977. Effects of tillage and direct drilling on soil properties during the growing season in a long-term barley mono-culture system. J. Agric. Sci. Camb. 88:431-442. https://doi.org/10.1017/S0021859600034948
  22. RDA. 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Rural Development Administration, Korea.
  23. Shear, G.M., and W.W. Moschler. 1969. Continuous corn by the no-tillage and conventional tillage method: A six-year comparion. Agron. J. 61:524-526. https://doi.org/10.2134/agronj1969.00021962006100040012x
  24. Smith, J.L., and E.A. Paul. 1990. The significance of soil microbial biomass estimations. In: Bollag, J.M., Stotzky, G. (Eds.), Soil Biochemistry, vol. 6. Marcel Dekker, Inc., New York, NY, pp. 357-396.
  25. Sullivan, P. 2003. Overview of cover crops and green manures: Fundamentals of sustainable agriculture. Appropriate Technology Transfer for Rural Areas (ATTRA), the National Center for Appropriate Technology (NCAT), Fayetteville, AR.
  26. Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 19:703-707. https://doi.org/10.1016/0038-0717(87)90052-6
  27. Wang, W.J., C.J. Smith, and D. Chen. 2004. Predicting soil nitrogen mineralization dynamics with a modified double exponential model. Soil Sci. Soc. Am. J. 68:1256-1265. https://doi.org/10.2136/sssaj2004.1256
  28. Wright, A.L., F.M. Hons, and J.E. Matocha Jr.. 2005. Tillage impacts on microbial biomass and nitrogen dynamics of corn and cotton rotations. Appl. Soil Ecol. 29:85-92. https://doi.org/10.1016/j.apsoil.2004.09.006