Pathogenic E. coli Inactivation in Upland Soils to a Change of Soil Moisture Content and Temperature

밭토양에서 토양수분과 온도변화에 따른 분변성 대장균 사멸율 변화

  • Kim, Min-Kyeong (Department of Agricultural Environment, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Kim, Min-Young (Department of Agricultural Engineering, NAAS, RDA) ;
  • Choi, Chul-Man (Analysis Support Center, The Foundation of Ag. Tech. Commercialization and Transfer) ;
  • Ko, Byong-Gu (Department of Agricultural Environment, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Kwon, Soon-Ik (Department of Agricultural Environment, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Weon, Hang-Yeon (National Agrobiodiversity Center, NAAS, RDA)
  • 김민경 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 김민영 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 최철만 (농업기술실용화재단) ;
  • 고병구 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 권순익 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업유전자원센터)
  • Received : 2010.01.29
  • Accepted : 2010.02.16
  • Published : 2010.02.28

Abstract

The application of livestock manure to cropland is a practice that has been used for centuries. Agricultural crops can utilize nutrients from manure, and the producer can utilize land for disposal, although in a "sustainable system" the concept is manure utilization and not waste disposal. However, meeting regulatory criteria regarding microbial quality remains an expensive and time consuming process. The purpose of this study was to quantify the level of environmental impact of soil moisture and temperature on fecal coliform (Escherichia coli or E. coli) survival in upland soils for sound application of livestock manure. Samples were collected up to 30 days depending on the given conditions. The inactivation rate of E. coli increased linearly with increased temperature while the inactivation rate gradually decreased with decreased soil moisture level. The overall findings of this study showed that the temperature was the limited factor on E. coli survival in soils over soil moisture content. This study will provide useful and practical guidelines to applicators of soil in deciding appropriate handling and time frames for land application for sustainable agriculture.

전 세계적으로 가축분뇨를 농경지에 시용하는 것은 작물과 토양에 양분을 공급하는 측면에서 오래 전부터 이용되어 왔으며, 최근 들어서는 자원을 재순환하기 위한 측면으로 이용되고 있다. 그러나, 환경적인 측면에서 가축분뇨를 농경지에 시용하였을 때 미생물적 평가나 규제기준은 비용과 시간이 많이 요구되어 우리나라에서는 이에 대한 연구가 수행되지 못한 실정이다. 따라서, 본 연구는 밭토양에서 토양수분과 온도조건에 따른 분변성 대장균의 사멸율을 조사하여 분변성 대장균이 외부 환경에 영향을 미칠 수 있는 수준을 평가하고자 수행하였다. 시료는 토양수분조건(10, 35, 65, 80%) 및 온도조건 (20, 25, $30^{\circ}C$)별로 정해진 기간 (3, 7, 14, 21, 28일) 동안 배양되었으며 각각의 시료에 포함된 대장균의 수는 plating method 를 이용하여 측정되었다. 분산분석을 통한 측정자료의 통계분석 결과, 분변성 대장균의 생존에는 토양수분함량과 온도가 주 요인이었는데, 특히 토양수분함량이 감소할수록 그리고 온도가 증가할수록 E. coli의 사멸율은 직선적으로 증가하였다. 또한, 토양수분 조건과 온도조건 중에서 분변성 대장균의 사멸율은 온도조건에 더 상관이 높은 것으로 나타났으며, 모든 온도조건에서 10%의 토양수분조건에서 분변성 대장균의 사멸율이 높았다. 이는 토양수분이 E. coli의 사멸에 제한적인 요인으로 작용하였음을 의미한다. 따라서, 본 연구는 가축분뇨를 농경지에 시용할 때 인체의 위해성과 외부 환경의 건전성을 유지하기 위해서는 고온 저습한 토양조건에서 시용하여야 한다는 현실적인 가이드라인을 제시하고자 한다.

Keywords

References

  1. Atlas, R.M., and R. Bartha. 1997. Microbial Ecology: Fundamentals and Applications. Benjamin/Cummings Publishing Company, Inc., California, pp. 334-340.
  2. Cattaneo, M.V., C. Masson, and C.W. Greer. 1997. The influence of moisture on microbial transport, survival and 2,4-D biodegradation with a generally marked Burkholderia cepacia in unsaturated soil columns. Biodegradation. 8:87-96. https://doi.org/10.1023/A:1008236401342
  3. Cosgrove, W.J., and F.R. Rijsbermann. 2000. World water vision-making water everybody's business. Earthscan Publications, London, United Kingdom.
  4. Coyne, M.S., R.A. Gilfillen, R.W. Rhodes, and R.L. Blevins. 1995. Soil and fecal coliform trapping by grass filter strips during simulated rain. J. Soil and Water Cons. 50(4): 405-408.
  5. Dominguez-Mariani, E., A. Acrrillo-Chavez, A. Ortega, and T. Orozco-Esquivel. 2004. Wastewater reuse in Valsequillo Agricultural area, Mexico: Environmental impact on groundwater. Water, Air, and Soil Pollution. 155:251-267. https://doi.org/10.1023/B:WATE.0000026531.37877.f8
  6. Haas, C.N., J.B. Rose, and C.P. Gerba. 1999. Quantitative microbial risk assessment. John Wiley & Sons Inc., New York.
  7. Jang, T.I., H.K. Kim, E.J. Lee, S.W. Park, and C.E. Park. 2009. Mass balance analysis of reclaimed wastewater irrigationon paddy fields in Korea. 2009 ASABE Annual International Meeting. Reno, Nevada, June 21-24, 2009.
  8. Jawson, M.D., L.F. Elliott, K.E. Saxton, and D.H. Fortier. 1982. The effect of cattle grazing on indicator bacteria in runoff from a Pacific Northwest Watershed. J. Environ. Qual. 11:621-627
  9. Mawdsley, J.L., R.D. Bardgett, R.J. Merry, B.F. Pain, and M.K. Theodorou. 1995. Pathogens in livestock waste, their potential for movement through soil and environmental pollution. Appl. Soil Ecol. 2:1-15. https://doi.org/10.1016/0929-1393(94)00039-A
  10. O'shaughnessy S.A., M.Y. Kim, and C.Y. Choi. 2008. Mathematical model to predict pathogen die-off in biosolids. J. Residuals Science & Technology. 5:87-93.
  11. Pang, L. 2009. Microbial removal rates in subsurface media estimated from published studies of field experiments and large intact soil cores. Journal of Environmental Quality, 38(4): 1531-1559. https://doi.org/10.2134/jeq2008.0379
  12. Park, M.H., N.S. Park, H. Park, H.S. Shin, and B.D. Kim. 1997. An economic analysis of desalination for potential application in Korea. Desalination. 114:209-221. https://doi.org/10.1016/S0011-9164(98)00013-7
  13. Pell, A.N. 1997. Manure and microbes: public and animal health problem. J. Dairy Sci. 80: 2673-2681. https://doi.org/10.3168/jds.S0022-0302(97)76227-1
  14. Price, P.B., and S.T. Todd. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. PNAS, 101:4631-4636. https://doi.org/10.1073/pnas.0400522101
  15. Rusin, P., S. Maxwell, and C.P. Gerba. 2002. Comparative surface-to-hand and finger trip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage. Journal of Applied Microbiology. 93:585-592. https://doi.org/10.1046/j.1365-2672.2002.01734.x
  16. Song, I., C.Y. Choi, S. O'Shaughnessy, and C.P. Gerba. 2005. Effects of temperature and moisture on coliphage PRD-1 survival in soil. J. of Food Protection. 68:2118-2122 https://doi.org/10.4315/0362-028X-68.10.2118
  17. Stine, S.W., I. Song, C.Y. Choi, and C.P. Gerba. 2005. Application of microbial risk assessment to the development of standards for enteric pathogens in water used to irrigate fresh produce. J. Food Prot. 68:913-918. https://doi.org/10.4315/0362-028X-68.5.913
  18. Stoddard, C.S., M.S. Coyne, and J.H. Grove. 1998. Fecal bacteria survival and infiltration through a shallow agricultural soil: timing and tillage effects. J. Environ. Qual. 27:1516-1523.
  19. Thornley, S., and A.W. Bos. 1985. Effects of livestock wastes and agricultural drainage on water quality: An Ontario case study. J. Soil Water Conserv. 40: 172-175.
  20. Woo, I.S., I.K. Rhee, and H.D. Park. 2000. Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Applied and Environmental Microbiology. 66(5): 2243-2247. https://doi.org/10.1128/AEM.66.5.2243-2247.2000
  21. World Health Organization. 1989. Health guidelines for the use of wastewater in agriculture and aquaculture. World Health Organization, Geneva,
  22. World Health Organization (WHO). 2002. Guidelines for the microbiological quality of treated wastewater used in agriculture: recommendations for revising WHO guidelines. Bull. WHO. 78:1104-1116.