Effect of Nitrate in Irrigation Water on Iron Reduction and Phosphate Release in Anoxic Paddy Soil Condition

관개용수 중의 질산 이온이 논토양의 철 환원과 인 용출에 미치는 영향

  • Kim, Byoung-Ho (Division of Life and Environmental Science, Daegu University) ;
  • Chung, Jong-Bae (Division of Life and Environmental Science, Daegu University)
  • 김병호 (대구대학교 생명환경학부) ;
  • 정종배 (대구대학교 생명환경학부)
  • Received : 2010.01.28
  • Accepted : 2010.02.16
  • Published : 2010.02.28

Abstract

Since ${NO_3}^-$ is amore favorable electron acceptor than Fe, high ${NO_3}^-$ loads function as a redox buffer limiting the reduction of Fe and following release of ${PO_4}^{3-}$ in flooded paddy soil. The effect ${NO_3}^-$ loaded through irrigation water on Fe reduction and ${PO_4}^{3-}$ release in paddy soil was investigated. Pot experiment was conducted where irrigation water containing 5 or 10 mg N $L^{-1}$ of ${NO_3}^-$ was continuously applied at 1 cm $day^{-1}$, and changes of ${NO_3}^-$, $Fe^{2+}$ and ${PO_4}^{3-}$ concentrations in soil solution at 5 and 10 cm depths beneath the soil surface were monitored as a function of time. Irrigation of rice paddy with water containing 5 mg N $L^{-1}$ of ${NO_3}^-$ led to reduced release of $Fe^{2+}$ and prevented solubilization of P at 5 cm depth beneath the soil surface. And application of irrigation water containing 10 mg N $L^{-1}$ of ${NO_3}^-$ could further suppress Fe reduction and solubilization of P through 10 cm depth soil layer beneath the surface. These results suggest that the introduction of high level ${NO_3}^-$ with irrigation water in rice paddy can strongly limit Fe reduction and P solubilization in root zone soil layer in addition to the excessive supply of N to rice plants.

담수상태의 토양이나 습지생태계에서 ${NO_3}^-$는 환원상태의 발달을 지연시키는 완충역할을 할 수 있다. 논토양에서 관개용수를 통하여 공급되는 ${NO_3}^-$가 Fe의 환원과 그에 따른 P의 가용화에 미치는 영향을 조사하였다. 관개용수중의 ${NO_3}^-$ 함량이 5 mg N $L^{-1}$ 수준일 경우 5 cm 깊이 토양에 도달하기 전에 대부분 탈질작용에 의해 제거되었으며, 5 cm 깊이 토양에서 일어나는 Fe의 환원과 P의 용출이 저해되었고 10 cm 깊이 토양의 환원현상에는 영향을 미치지 못하였다. ${NO_3}^-$ 함량이 10 mg N $L^{-1}$ 수준인 관개용수를 공급하였을 경우에는 10 cm 깊이 토양층까지 ${NO_3}^-$가 잔류 유입되었으며, Fe의 환원과 P의 용출을 현저히 억제하는 것으로 나타났다. 이상의 결과를 보면 관개용수를 통하여 ${NO_3}^-$를 포함한 질소가 과도하게 논토양으로 유입되면 질소과다현상을 유발할 뿐만 아니라 P의 가용화를 억제함으로써 인 결핍을 초래할 수도 있을 것이다.

Keywords

References

  1. Anderson, J.M. 1982. Effect of nitrate concentration in lake water on phosphate release from the sediment. Water Res. 16:1119-1126. https://doi.org/10.1016/0043-1354(82)90128-2
  2. Chung, J.B. 2009. Effect of nitrate on iron reduction and phosphorus release in flooded paddy soil. Korean J. Environ. Agric. 28:165-170. https://doi.org/10.5338/KJEA.2009.28.2.165
  3. Chung, J.B., B.J. Kim, and J.K. Kim. 1997. Water pollution in some agricultural areas along Nakdong river. Korean J. Environ. Agric. 16:187-192.
  4. Chung, J.B., B.J. Kim, J.K. Kim, and M.K. Kim. 1998. Water quality of streams in some agricultural areas of different agricultural practices along Nakdong river basin. Korean J. Environ. Agric. 17:140-144.
  5. Hidaka, S. 1993. Multi-utilization of water and irrigation water quality. Jpn. J. Soil Sci. Plant Nutr. 64:465-473.
  6. Kasuya, M. 1999. Denitrification of nitrate introduced by groundwater irrigation in rice paddy soil. Jpn. J. Soil Sci. Plant Nutr. 70:123-131.
  7. Lucassen, E.C.H.E.T., A.J.P. Smolders, A.L. van der Salm, and J. G. M. Roelofs. 2004. High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands. Biogeochemistry 67:249-267. https://doi.org/10.1023/B:BIOG.0000015342.40992.cb
  8. Matocha, C.J., and M.S. Coyne. 2007. Short-term response of soil iron to nitrate addition. Soil Sci. Soc. Am. J. 71:108-117. https://doi.org/10.2136/sssaj2005.0170
  9. McBride, M.B. 1994. Environmental chemistry of soils. Oxford University Press, New York, USA.
  10. Miller, W.P., and D.M. Miller. 1987. A micro-pipette method for soil mechanical analysis. Commun. Soil Sci. Plant Anal. 18:1-15. https://doi.org/10.1080/00103628709367799
  11. Ministry of Environment. 2009. Environmental statistics (http://stat.me.go.kr/nesis/index.jsp). Ministry of Environment, Republic of Korea, Gwacheon, Korea.
  12. Murray, T.E. 1995. The corelation between iron sulfide precipitation and hypolimnetic phosphorus accumulation during one summer in a softwater lake. Can. J. Fish. Aquat. Sci. 52:1190-1194. https://doi.org/10.1139/f95-115
  13. Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539-579. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2: Chemical and microbiological properties. SSSA, Madison, WI, USA.
  14. Olson, R.V., and R. Ellis, Jr. 1982. Iron. p. 301-312. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2: Chemical and microbiological properties. SSSA, Madison, WI, USA.
  15. Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Adv. Agron. 24:29-96. https://doi.org/10.1016/S0065-2113(08)60633-1
  16. RDA. 1988. Methods of soil chemical analysis. Rural Development Administration, Suwon, Korea.
  17. Roden, E.E., and J.W. Edmonds. 1997. Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch. Hydrobiol. 139:347-378.
  18. Sallade, Y.E., and J.T. Sims. 1997. Phosphorus transformations in the sediments of Delaware's agricultural drainageways: II. Effect of reducing conditions on phosphorus release. J. Environ. Qual. 26:1579-1588.
  19. Sanyal, S.K., and S.K. De Datta. 1991. Chemistry of phosphorus transformations in soil. Adv. Soil Sci. 16:1-120. https://doi.org/10.1007/978-1-4612-3144-8_1
  20. Schlesinger, W.H. 1997. Biogeochemistry: An analysis of global change. 2nd ed. Elsevier Academic Press, Amsterdam, Netherlands.
  21. Smolders, A., and J.G.M. Roelofs. 1993. Sulphate-mediated iron limitation and eutrophication in aquatic ecosystems. Aquat. Bot. 46:247-253. https://doi.org/10.1016/0304-3770(93)90005-H
  22. Sposito, G. 1989. The chemistry of soils. Oxford University Press, New York, USA.
  23. Straub, K.L., W.A. Schonhuber, D.E.E. Buchholz-Cleven, and B. Schink. 2004. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygenindependent iron cycling. Geomicrobiol. J. 21:371-378. https://doi.org/10.1080/01490450490485854
  24. Stucki, J.W., and W.L. Anderson. 1981. The quantitative assay of minerals for $Fe^{2+}$ and $Fe^{3+}$ using 1,10-phenanthroline : I. Sources of variability. Soil Sci. Soc. Am. J. 45:633-637. https://doi.org/10.2136/sssaj1981.03615995004500030039x
  25. Surridge, B.W.J., A.L. Heathwaite, and A.J. Baird. 2007. The release of phosphorus to pore water and surface water from river riparian sediments. J. Environ. Qual. 36:1534-1544. https://doi.org/10.2134/jeq2006.0490
  26. Weber, K.A., J. Pollock, K.A. Cole, S.M. O'Connor, L.A. Achenbach, and J.D. Coates. 2006. Anaerobic nitrateependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002. Appl. Environ. Microbiol. 72:686-694. https://doi.org/10.1128/AEM.72.1.686-694.2006
  27. Young, E.O., and D.S. Ross. 2001. Phosphate release from seasonally flooded soils: A laboratory microcosm study. J. Environ. Qual. 30:91-101. https://doi.org/10.2134/jeq2001.30191x