Monitoring of Chemical Properties from Paddy Soil in Gyeongnam Province

경남지역 논 토양 화학성분 변동조사

  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Lee, Seong-Tae (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Heo, Jae-Young (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Min-Geun (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Hong, Kang-Pyo (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Song, Won-Doo (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Rho, Chi-Woong (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Lee, Jin-Ho (Department of Bioenvironmental Chemistry, College of Agricultural and Life Sciences, Chonbuk National University) ;
  • Jeon, Weon-Tai (National Institude of Crop Science, RDA) ;
  • Ko, Byong-Gu (National Academy of Agricultural Science, RDA) ;
  • Roh, Kee-An (National Academy of Agricultural Science, RDA) ;
  • Ha, Sang-Keun (National Academy of Agricultural Science, RDA)
  • Received : 2010.03.15
  • Accepted : 2010.04.06
  • Published : 2010.04.30

Abstract

Monitoring of the dynamic changes at paddy rice agriculture is very important for agricultural sustainability. Field monitoring was performed to evaluate the soil chemical properties of 260 paddy soil samples every four years from 1999 to 2007 in Gyeongnam Province. Soil chemical properties such as pH, organic matter, available phosphate, silicate, exchangeable potassium, calcium, and magnesium contents were analyzed. The contents of exchangeable cations, and available silicate were significantly increased in 2007 compared to 1999. The chemical contents of organic matter, exchangeable potassium, and magnesium were significantly increased in acid sulfate soil, and silty clay loam compared to those of other soil types, and textures. Especially, content of organic matter was significantly increased in hill area compared to other soil topographies, while exchangeable potassium was significantly decreased. Principle component analysis (PCA) of chemical properties in paddy soils was obtained with eigenvalues > 1 summing 39.1%of variance for PC1, 20.4%of variance for PC2, and 59.5%of the total variance in the all of soil chemical properties. Therefore, principal component analysis is more effective for monitoring from chemical properties of paddy soil.

효율적인 논 토양의 양분관리를 위한 기초 자료를 제공하고자 경남지역 논 토양 260 지점의 화학성분 변동을 1999년부터 2007년까지 4년 주기로 분석하였다. 논 토양의 화학성분 평균 함량은 pH 5.7 (범위 4.4-7.6), 유기물 29 g $kg^{-1}$ (1-86), 유효인산 202 mg $kg^{-1}$ (2-1,218), 치환성 칼륨 0.32 $cmol_c\;kg^{-1}$ (0.04-1.80), 치환성 칼슘 5.4 $cmol_c\;kg^{-1}$ (0.4-33.1), 치환성 마그네슘 1.2 $cmol_c\;kg^{-1}$ (0.2-6.0) 및 유효규산 103 mg $kg^{-1}$ (21-742) 였다. 연도별 토양 화학성분 변동 특성을 요약하면 유효인산 함량은 1999년부터 이미 적정범위 보다 높았고 유효규산 함량은 아직까지도 많이 부족한 상태였으며 치환성 양이온은 칼슘과 마그네슘에 비해 칼륨이 상대적으로 높은 편이었다. 연도별 주성분 분석결과 Eigenvalue가 1.0 이상인 주성분은 2개였고 제1주성분 (PC 1)에 속하는 토양 화학성은 치환성 칼슘 (0.511), 치환성 마그네슘 (0.478), pH (0.402), 유효규산 (0.395) 및 치환성 칼륨 (0.392) 등 5개였으며 제2주성분 (PC 2)에 속하는 토양 화학성분은 유효인산 (0.664) 및 유기물 함량 (0.551) 등 2개였다. 토양 특성은 제 1주성분이 39.1%, 제 2주성분이 20.4%로서 전체 59.5%의 자료를 설명할 수 있는 것으로 나타났다. 논 토양의 화학성분을 주기적으로 모니터링 한 결과는 다양한 농업환경 변동을 이해하고 대응함으로서 지속적인 농업을 발전시키는 데 기여할 것으로 판단되며 이러한 관점에서 주성분 분석은 아주 유용하게 사용할 수 있을 것으로 기대된다.

Keywords

References

  1. Cho, I.H., Y.S. Kim, and K.D. Zoh. 2005. A case study on the comparison and assessment between environmental impact assessment and post-environmental investigation using principal component analysis. Kor. J. Env. Hlth. 31:134-146.
  2. Cho, J.Y., K.W. Han, J.K. Choi, Y.J . Kim, and K.S. Yoon. 2002. N and P losses from a paddy field plot in central Korea. Soil Sci. Plant Nutr. 48:301-206. https://doi.org/10.1080/00380768.2002.10409205
  3. Eom, K.C., S.H. Yun, S.W. Hwang, S.G. Yun, and D.S. Kim. 1993. Public benefit from paddy soil. Korean J. Soil Sci. Fert. 26:314-333.
  4. Hur, B.K., S.K. Rim, Y.H. Kim, and K.Y. Lee. 1997. Physico-chemical properties on the management groups of paddy soils in Korea. 30:62-66.
  5. Hwang, N.Y., K.H. Park, and J.K. Kim. 1983. Effect of lime and phosphorus to rice plant on acid sulfate soil. Korean J. Soil Sci. Fert. 16:64-71.
  6. Jo, I.S., and M.H. Koh. 2004. Chemical changes in agricultural soils of Korea : data review and suggested countermeasures. Environ. Geochem. Hlth. 26:105-117.
  7. Kim, C.B., and J. Choi. 2002. Changes in rice yield, nutrients use efficiency and soil chemical properties as affected by annul application of slag silicate fertilizer. Korean J. Soil Sci. Fert. 35:280-289.
  8. Kim, Y.S., S.C. Seo, and K.H. Han. 1963. Study on soil analysis. Annual research report of Institute of Plant Envrionment. RDA, Suwon, Korea.
  9. Koo, J.Y., M.J. Yu, S.G. Kim, M.H. Shim, and A. Koizumi. 2005. Estimation of long-term water demand by principal component and duster analysis and practical application. J. KSEE 27:870-876.
  10. Lee, S.M., I.S. Ryu, C.S. Lee, Y.H. Park, and M.H. Um. 1999. Determination of application rate of composed pig manure for wetland rice. Korean J. Soil Sci. Fert. 32:182-191.
  11. NIAST (National Institute of Agricultural Science and Technology). 2000. Analytical methods of soil and plant. NIAST, Suwon, Korea.
  12. NIAST (National Institute of Agricultural Science and Technology). 2006. Annual report of the monitoring project on agro-environmental quality in 2005. NIAST, RDA, Suwon, Korea.
  13. NIAST (National Institute of Agricultural Science and Technology). 2006. Fertilizer recommendation for crops. NIAST, RDA, Suwon, Korea.
  14. NIAST (National Institute of Agricultural Science and Technology). 2008. Annual report of the monitoring project on agro-environmental quality in 2007. NIAST, RDA, Suwon. Korea.
  15. Park, Y.D., and Y.S. Kim. 1971. Increased yielding effect of silica on rice grown on Akiochi soil. Korean J. Soil Sci. Fert. 4:1-11.
  16. Peters. J.B. 2000. Gambian soil fertility trends, 1991-1998. Commun. Soil Sci. Plant Anal. 31:2201-2210.
  17. Pollock, C., J. Pretty, I. Crute. C. Leaver, and H. Dalton. 2008. Introduction sustainable agriculture. Philos Trans R. Soc. B. 363:445-446. https://doi.org/10.1098/rstb.2007.2193
  18. Prakongkep, N., A. Suddhiprakam, I. Kheoruenromne, M. Smirk, and R.J. Gilkes. 2008. The geochemistry of Thai paddy soils. Geoderma 144:310-324. https://doi.org/10.1016/j.geoderma.2007.11.025
  19. Pretty, J. 2008. Agricultural sustainability: concepts, principles and evidence. Philos Trans R. Soc. B. 363:447-465. https://doi.org/10.1098/rstb.2007.2163
  20. RDA (Rural development administration). 1983. Soil in Korea. RDA, Suwon, Korea.
  21. RDA. 1989. Report of the improvement of soil for ten years. RDA, Suwon, Korea.
  22. Rust, R.H., R.S. Adams, and W.P. Martin. 1972. Developing a soil quality index. Indic. J. Environ. Qual. 1:243-247.
  23. SAS Institute. 2006. SAS Version 9.1.3. SAS Inst., Cary, NC.
  24. Song, Y.S., H.J. Jun, B.G. Jung, W,K. Park, K.S. Lee, H.K. Kwak, J.H. Yoon, C.S. Lee, B.Y. Yeon, P.J. Kim, and Y.S. Yoon. 2007. Determination of optimum rate and interval of silicate fertilizer application for rice cultivation in Korea. Korean J. Soil Sci. Fert. 40:354-363.
  25. Tang, J., B. Zhang, C. Gao, and H. Zepp. 2008. Hydrological pathway and source area of nutrient losses identified by a multi-scale monitoring in an agricultural catchment. Catena 72:374-385. https://doi.org/10.1016/j.catena.2007.07.004
  26. Warkentin, B.P., and H.F. Fletcher. 1977. Soil quality for intensive agriculture. p. 594-598. In Proceedings of international seminar on soil environment and fertilizer management in intensive agriculture. Soc. Sci. Soil and Manure and Natl. Inst. Of Agric. Sci., Tokyo, Japan.
  27. Yoo, C.H., J.G. Kim, S.Y. Choi, G.H. Cho, S.J. Yoo, J.D.So, and G.S. Rhee. 1993. Studies on amelioration of soil physic-chemical properties and rice yield in sandy tidal saline paddy soil. Korean J. Soil Sci. Fert. 26:241-248.
  28. Yoon, J.H, B.G. Jung, H.J. Jun, and H.K. Kwak. 2004. Soil quality assessment method of paddy and upland. Korean J. Soil Sci. Fert. 37:357-364.
  29. Zhao, J., Q. Luo, H. Deng, and Y. Yan. 2008. Opportunities and challenges of sustainable agricultural development in China. Philos Trans R. Soc. B. 363:893-904. https://doi.org/10.1098/rstb.2007.2190