Monitoring of Heavy Metal Contents from Paddy Soil in Gyeongnam Province

경남지역 논 토양 중금속 함량 변동조사

  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Lee, Seong-Tae (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Heo, Jae-Young (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Min-Geun (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Hong, Kang-Pyo (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Eun-Seok (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Song, Won-Doo (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Rho, Chi-Woong (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Lee, Jin-Ho (Department of Bioenvironmental Chemistry, College of Agricultural and Life Sciences, Chonbuk National University) ;
  • Jeon, Weon-Tai (National Institute of Crop Science, RDA) ;
  • Ko, Byong-Gu (National Academy of Agricultural Science, RDA) ;
  • Roh, Kee-An (National Academy of Agricultural Science, RDA) ;
  • Ha, Sang-Keun (National Academy of Agricultural Science, RDA)
  • Received : 2010.05.19
  • Accepted : 2010.06.08
  • Published : 2010.06.30

Abstract

Monitoring of the heavy metals at paddy rice agriculture is very important for environmental agriculture. A study was carried out of heavy metal concentrations in 260 paddy soil samples every four years from 1999 to 2007 in Gyeongnam Province. Heavy metals such as Cd, Cr, Cu, Ni, Pb, Zn, and As in paddy soils were analyzed. Average concentrations of heavy metal were Cd 0.426 (ranged 0.003-1.379) mg $kg^{-1}$ for Cd, 1.189 (0.003-3.264) mg $kg^{-1}$, for Cr, 9.68 (0.05-22.38) mg $kg^{-1}$ for Cu, 2.64 (0.01-7.36) mg $kg^{-1}$ for Ni, 23.7 (0.7-54.1) mg $kg^{-1}$ for Pb, 20.8 (0.7-131.2) mg $kg^{-1}$ for Zn, and 1.054 (0.001-2.110) mg $kg^{-1}$ for As, respectively. Long-term changes of heavy metals were showed that Cd, Ni, and Zn were significantly increased whereas Cr, Cu, and As were significantly decreased. Principle component analysis (PCA) of heavy metals in paddy soils was obtained with eigenvalues > 1 summing 34.3% of variance for PC1, 17.5% of variance for PC2, and 51.8% of the total variance in soil heavy metals.

경남지역 논 토양의 중금속 관리를 위한 기초 자료를 제공하고자 260 지점을 대상으로 1999년부터 2007년까지 4년 주기로 분석하였다. 논 토양의 중금속 평균 함량은 Cd 0.426 (범위 0.003-1.379) mg $kg^{-1}$, Cr 1.189 (0.003-3.264) mg $kg^{-1}$, Cu 9.68 (0.05-22.38) mg $kg^{-1}$, Ni 2.64 (0.01-7.36) mg $kg^{-1}$, Pb 23.7 (0.7-54.1) mg $kg^{-1}$, Zn 20.8 (0.7-131.2) mg $kg^{-1}$, As 1.054 (0.001-2.110) mg $kg^{-1}$ 였다. 장기적인 변동조사 결과 경남지역 논 토양의 Cd, Ni 및 Zn 함량은 유의적으로 증가한 반면, Cr, Cu 및 As 함량은 유의적으로 감소하였고 Pb 함량은 큰 변화가 없었다. 논 토양 As 함량은 Cu 및 Pb와 고도로 유의적인 정의상관을 보인 반면, Cr 및 Ni 함량과는 유의적인 부의상관을 나타냈다. 경남지역 논 토양 중금속의 주성분 분석결과 고유값이 1.0 이상인 주성분은 3개였고 제 1주성분 (PC1)에 속하는 토양 중금속은 Cd (0.550), Ni (0.490), Zn (0.452) 및 Pb (0.422) 등 4개였으며 제 2주성분 (PC2)에 속하는 토양 중금속은 As (0.760) 및 Cr (-0.375)등 2개였고 제 3주성분 (PC3)에 속하는 토양 중금속은 Cu (0.740) 였다. 논 토양 중금속 함량의 특성은 제 1주성분이 34.3%, 제 2주성분이 17.5%로서 전체 51.8%의 자료를 설명할 수 있는 것으로 나타났다.

Keywords

References

  1. Andreu, V. and E. Gimeno-Garcia. 1999. Evolution of heavy metals in marsh areas under rice farming. Environmental Pollution. 104:271-282. https://doi.org/10.1016/S0269-7491(98)00179-1
  2. Berti. W.R. and L.W. Jacobs. 1996. Chemistry and Phytotoxicity of Soil Trace Elements from Repealed Sewage Sludge Applications. J. Environ. Qual. 25: 1025- 1032.
  3. Cho, I.H., Y.S. Kim. and K.D. Zoh. 2005. A case study on the comparison and assessment between environmental impact assessment and post-environmental investigation using principal component analysis. Kor. J. Env. Hlth. 31:134-146.
  4. Choi. M.T., J,I. Lee. Y.U. Yun. J.E. Lee, B.C. Lee, E.S. Yang, and Y.H. Lee. 2010. Relationship between fertilizer application level and soil chemical properties for strawberry cultivation under greenhouse in Chungnam Province. Korean J. Soil Sci. Fert. 43:153-159.
  5. de Matos, A.T., M.P.F. Fontes, L.M. da Costa, and M.A. Martinez. 2000. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environmental Pollution. 111 :429-435 .
  6. Holmgren, G.G.S., M.W. Meyer, R.L. Chaney, and R.B. Daniels. 1993. Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. J. Environ. Qual. 22:335-348.
  7. Hyun, H.N. and S.H. Yoo. 1991. Effects of soil chemical properties on the distribution and forms of heavy metals in paddy soils near zinc mines. Korean J. Soil Sci. Fert. 24: 183-191 .
  8. Iimura, K. 1981. Heavy metal problems in paddy soils: heavy metal pollution in soils of Japan, Japan Scientific Societies, Tokyo, Japan.
  9. Jung, G.B., J.S. Lee, W.I. Kim, and B.Y. Kim. 1999. The effect of irrigation control and the application of soil ameliorators on cadmium uptake in paddy rice. Korean J. Environ. Agric. 18:355-360.
  10. Jung, G.B., J.S. Lee, W.I. Kim, J.H. Kim, J.D. Shin, and S.G. Yun. 2005. Fractionation and potential mobility of heavy metals in tailings and paddy soils near abandoned metalliferous mines. Korean J. Soil Sci. Fert. 38:259- 268.
  11. Jung, G.B., B.Y. Kim, K.H. So, J.S. Lee, B.Y. Yeon, Y.K. Chung. 1996. Content of heavy metal in paddy soil and brown rice under long-term fertilization. Korean J. Soil Sci. Fert. 29: 150- 157.
  12. Jung, G.B., W.I. Kim, K.L. Park, and S.G. Yun. 2001. Vertical distribution of heavy metals in paddy soil near abandoned metal mines. Korean J. Environ. Agric. 20:297-302.
  13. Jung, K.Y. 1995. Practice of application of organic matter and by-product compost p. 17-45. Symposium of problem and measures about make a fertilizer with organic waste. Korean J. Soil Sci. Fert., Suwon, Korea.
  14. Jung, M.C. and I. Thornton. 1997. Environmental contamination and seasonal variation of metals in soils. plants and waters in the paddy fields around a Pb-Zn mine in Korea. Sci. Total Environ. 198:105-121. https://doi.org/10.1016/S0048-9697(97)05434-X
  15. Kim, B.Y. 1996. Real condition and countermeasure of the environmental pollution. Symposium of Problem and improvement of the agricultural environment in Korea, Korean J. Environ. Agric. p.27-53.
  16. Kim, B.Y., B.K. Jung, J.W. Choi, E.S. Yun, and S. Choi. 1995. Heavy metals in paddy soil of Korea. Korean J. Soil Sci. Fert. 28:295-300.
  17. Kim, B. Y. and K.S. Kim. 1986. Studies on uptake by crops of lead and reduction of it's damage, III. Effect of water management and lime application on lead uptake in paddy rice. Korean J. Soil Sci. Fert. 19:147-151.
  18. Kim, M.J., K.H. Ahn, and Y. Jung. 2003. Vertical distribution and mobility of arsenic and heavy metals in mine tailings and nearby paddy fields. J. KSEE 25:544-553.
  19. Kim, M.K. and K.S. Lee. 1983. Heavy metal contents of the drainage-basin soil in Daejeon area. Korean J. Environ. Agric. 2:78-82.
  20. Kim, S.J., S.H. Baek, and K.H. Moon. 1996. Fractionation of heavy metals and correlation with their contents in rice plant grown in paddy near smelter area. Korean J. Environ. Agric. 15: 1-10.
  21. Kim, W. I., M.S. Kim, K.A. Roh, J.S. Lee, S.G. Vun, B.J. Park, G.B. Jung, C.S. Kang, K.R. Cho, M.S. Ahn, S.C. Choi, H.J. Kim, Y.S. Kim, Y.K. Nam, M.T. Choi, Y.H. Moon, B.K. Ahn, H.K. Kim, H.W. Kim, Y.J. Seo, J.S. Kim, Y.J. Choi, Y.H. Lee, S.C. Lee, and J.J. Hwang. 2008. Long-term monitoring of heavy metal contents in paddy soils. Korean J. Soil Sci. Fert. 41: 190-198.
  22. Koo, J.Y., MJ. Yu, S.G. Kim, M.H. Shim, and A. Koizumi. 2005. Estimation of long-term water demand by principal component and cluster analysis and practical application. J. KSEE 27:870-876.
  23. Krebs, R., S.K. Gupta. G. Furrer, and R. Schulin. 1998. Solubility and uptake of metals with and without liming of sludge amended soils. J. Environ. Qual. 27: 18-23.
  24. Lee, J.H., K.W. Han, and J.Y. Cho. 1997. Content of heavy metals in paddy soils and brown rice from Kunsan industrial complex area. Agric. Chem. Biotechnol. 40:342-346.
  25. Lee, M.H., K.S. Kim, B.Y. Kim, and K.H . Han. 1984. Effect of lime application on growth and Cd uptake of paddy rice. Korean J. Soil Sci. Fert. 17:258-264.
  26. Lee, S.R. and K.J. Song. 1985. A survey on the heavy metal concentration of soil samples around Onsan industrial complex. Korean J. Environ. Agric. 4:88-94.
  27. Lee. Y.H., S.T. Lee, J.Y. Heo, M.G. Kim, K.P. Hong, W.D. Song, C.W. Rho, J.H. Lee, W.T. Jeon, B.G. Ko, K.A. Roh, and S.K. Ha. 2010. Monitoring of chemical properties from paddy soil in Gyeongnam Province. Korean J. Soil Sci. Fert. 43: 140-146.
  28. Ma, L.Q., F. Tan, and W.G. Harris. 1997. Concentrations and distribution of eleven metals in Florida soils. J. Environ. Qual. 26:769-775.
  29. Mench, M., D. Baize, and B. Mocquot. 1997. Cadmium availability to wheat in five soil series from the Yonne District, Burgundy, France. Environmental Pollution. 95:93-103. https://doi.org/10.1016/S0269-7491(96)00078-4
  30. MOE (Minister of Environment). 1996. Standard test method for soil pollution. Gwacheon, Korea.
  31. Nakai, M. 2007. Development of soil-crop inventory on heavy metals in Japan. International workshop draft proceedings of ESAFS 8.
  32. Nicholson, F.A., B.J. Chambers, and B.J. Alloway. 1997. Effect of soil pH on heavy metal bioavailability. Proceedings of 4th Int. Conf. on the Biogeochemistry of Trace Elements.
  33. NIAST (National Institute of Agricultural Science and Technology). 2008. Annual report of the monitoring project on agro-environmental quality in 2007. NIAST, RDA, Suwon, Korea.
  34. Page, A.L., F.T. Bingham, and A.C. Chang. 1981. Cadmium. In Lepp, N.W. (ed) Effect of heavy metal pollution on plants. Vol 1, Effects of trace metals on plant funct ion. Applied Science, London, UK.
  35. Petruzzelli, G. 1989. Recycling wastes in agriculture: heavy metal bioavailability. Agr. Ecosyst. Eviron. 27:493-503. https://doi.org/10.1016/0167-8809(89)90110-2
  36. RDA (Rural development administration). 1983. Soil in Korea. RDA, Suwon, Korea.
  37. SAS Institute. 2006. SAS Version 9.1.3. SAS Inst., Cary, NC.
  38. Sims, J. T. and J.S. Kline. 1991. Chemical fractionation and uptake of heavy metals in soils amended with cocomposted sewage sludge. J. Environ. Qual. 20:387-395.
  39. Vulava, V.M., B.R. James, and A. Torrents. 1997. Copper solubility in Myersville B horizon soil in the presence of DTPA. Soil Sci. Soc. Am. J. 61:44-52. https://doi.org/10.2136/sssaj1997.03615995006100010008x
  40. Xia, Z.L. and C.R. Mu. 1984. The effects to tobacco and corn by interactive effects of Cd, Zn, Pb. J. Ecol. 4:231-235.
  41. Yoo, S.H., K.J. Ro, S.M. Lee, M.E. Park, and K.H. Kim. 1996. Distribution of cadmium, copper, lead, and zinc in paddy soils around an old zinc mine. Korean J. Soil Sci. Fert. 29:424-431.
  42. Yoon, J.H., B.G. Jung, H.J. Jun, and H.K. Kwak. 2004. Soil quality assessment method of paddy and upland. Korean J. Soil Sci. Fert. 37:357-364.