The Effectiveness of Arbuscular Mycorrhizal Fungi (AMF) Inoculation on the Growth of Lettuce

상추에 대한 Arbuscular 균근균(AMF) 접종원 처리 효과

  • Wee, Chi-Do (Department of Agrucultural Chemistry, Sunchon National University) ;
  • Li, Jun-Xi (Department of Agrucultural Chemistry, Sunchon National University) ;
  • Kim, Hong-Lim (Namhae Sub-Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Sohn, Bo-Kyoon (Department of Agrucultural Chemistry, Sunchon National University)
  • 위치도 (순천대학교 대학원 농화학과) ;
  • 리준시 (순천대학교 대학원 농화학과) ;
  • 김홍림 (농촌진흥청 국립원예특작과학원 남해출장소) ;
  • 손보균 (순천대학교 대학원 농화학과)
  • Received : 2010.08.02
  • Accepted : 2010.08.11
  • Published : 2010.08.31

Abstract

To evaluate the effectiveness of AMF on the growth of horticultural crops, we compared mycorrhizal and non-mycorrhizal plants, lettuce (Lactuca sativa L.), that were inoculated with AMF propagules. As compared to the AMF- seedlings, in AMF+ seedlings at 3 weeks after sowing, the number of leaves increased 9%, leaf fresh weight increased 59%, leaf area increased 58%, and leaf length and width increased 21-22%, and chlorophyll content increased 2%. Furthermore, at 9 weeks after sowing, compared to the AMF- plants, in lettuce plants inoculated with AMF at the sowing and transplanting stages, the number of leaves increased 21% and 18%, leaf fresh weight increased 51% and 41%, root fresh weight increased 56% and 47%, and chlorophyll content increased 18% and 19%, respectively. Further this experiment indicated that the growth responses of lettuce plants inoculated with AMF during transplanting were similar to those inoculated with AMF during sowing. The results imply that the AMF infection timepoint is not important. The P content in the leaves of lettuce plants inoculated with AMF during transplanting was significantly higher (217%) than that of leaves from lettuce plants not inoculated with AMF. In contrast, the P content of the leaves of lettuce plants inoculated with AMF during the sowing stage was similar to that of leaves of control lettuce plants. In this experiment, P and chlorophyll content in AMF+ lettuce plants were higher than in AMF- plants, indicating that the photosynthetic rate was improved with AMF inoculation.

AMF 접종원 처리가 원예작물의 생육에 미치는 효과를 구명하기 위하여 상추 (Lactuca sativa L.)에 파종단계와 이식단계에서 수단그라스를 기주식물로 증식한 g 당 30개의 포자와 AMF가 감염된 뿌리, 균사 및 토양이 혼합된 접종원을 처리한 후 이식 전후에 걸쳐 작물의 생장반응과 수량성을 비교 검토하였으며, AMF 포자밀도와 감염률 및 감염양상을 조사하였고, 작물의 무기양분의 흡수양태를 분석하였다. 상추의 파종단계에서 AMF 접종원을 처리한 후 생육반응을 조사한 결과, 파종 후 3주가 경과한 초기에서 AMF 접종원 처리구의 상추는 대조구보다 엽수는 9%, 엽의 생체중은 59%, 엽면적은 58% 및 엽장과 엽폭은 21-22%가 증가하였으며 엽록소함량은 2%가 향상되었다. 파종 후 9주가 경과하여서는 파종단계와 이식단계에서의 AMF 접종원 처리구는 대조구에 비해 엽수는 21%와 18%, 엽의 생체중은 51%와 41%, 근체중은 56%와 47%가 각각 증가하였으며 엽록소함량은 18%와 19%가 향상된 것으로 조사되었다. 상추 엽의 P 함량을 분석한 결과 이식단계에서 AMF 접종원 처리구가 대조구보다 217%가 증가된 P 함량을 보임으로서 P의 흡수이용이 증진되었고 상추의 생육에 영향을 미친 것으로 판단된다. 상추 근권토양의 AMF 포자밀도는 상추의 생육초기에 AMF 접종원 처리구가 대조구의 3배를 상회하는 높은 수준으로 나타났고, 9주가 경과하였을 때는 276-295%가 증가된 것으로 조사되었다. AMF 감염률 또한 대조구에 비해 크게 향상된 것으로 조사되었고 생육 후기에는 낭상체와 균사가 치밀하게 발달됨으로서 AMF 의존도가 높음을 확인하였다.

Keywords

References

  1. Abbott, L.K. and A.D. Robson. 1984. The effect of VA mycorrhizae on plant growth. In: Powell, C. L., D.J. Bagyaraj. (Eds.), VA mycorrhiza. CRC Press, Boca Raton, pp. 113-130.
  2. Abdalla, M.E. and G.M . Abdel-Fattah. 2000. Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod root disease in Egypt. Mycorrhiza 10:29-35. https://doi.org/10.1007/s005720050284
  3. An, Z.Q., J.W. Hendrix. D.E. Hershman, and G.T. Henson. 1990. Evaluation of the most probable number (MPN) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi. Mycologia 82:576-581. https://doi.org/10.2307/3760048
  4. Azocon, R., L.L. Hendley, and C.M. Schrimgeour. 1998. The $\delta^{15}$ N of lettuce and barley are affected by AM status and external concentration of N. New Phytol. 138:19-26. https://doi.org/10.1046/j.1469-8137.1998.00883.x
  5. Azocon, R., M. Gomez, and R. Tobar. 1992. Effects of nitrogen source on growth , nutrition , photosynthetic rate and nitrogen metabolism of mycorrhizal and P-fertilized plants of Lactuca sativa L. New Phytol. 121 :227-234. https://doi.org/10.1111/j.1469-8137.1992.tb01108.x
  6. Azocon, R., M. Gomez,and R. Tobar. 1996. Physiological and nutritional responses by Loctuca sativa L. to nitrogen sources mycorrhizal fungi under drought condition. Biol. Fert. Soils 22:156-161. https://doi.org/10.1007/BF00384448
  7. Bouwmeester, H.J., C. Roux. J.A. Lopez-Raez. and G. Becard. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12:224-230. https://doi.org/10.1016/j.tplants.2007.03.009
  8. Brundrett, M.C., Y. Piche, R.L. and Peterson. 1984. A new method for observing the morphology vesicular-arbuscular mycorrhizae. Can. J. Bot. 62:2128-2134. https://doi.org/10.1139/b84-290
  9. Cho., E.J ., D.J. Lee, C.D. Wee. H.L. Kim. Y.H. Cheong, J.S. Cho, and B.K. Sohn. 2009. Effects of AMF inoculation on soil structure in mycorrhizosphere. Sci. Hort. 122:633-183. https://doi.org/10.1016/j.scienta.2009.06.025
  10. Davies Jr. F.T., J.R., Potter, and R.G. Linderman. 1993. Drought resistance of mycorrhizal pepper plants independent of leaf P concentration response in gas exchange and water relations. Physiol. Plant 87:45-53. https://doi.org/10.1111/j.1399-3054.1993.tb08789.x
  11. Happer, C.M. 1983. The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytol. 9:389-399.
  12. Jackson,L.E. 1995. Root architecture in cultivated and wild lettuce (Lactuca spp.). Plant Cell Environ. 18:885-895. https://doi.org/10.1111/j.1365-3040.1995.tb00597.x
  13. Jacobsen. I. 1991. Carbon metabolism in Mycorrhiza. In: Burrock, H. and J. Mosser. Academic Press (Eds.). Methods in Microbiology 23: 149-180. https://doi.org/10.1016/S0580-9517(08)70176-4
  14. Jones, J.B., B. Wolf. and H.A. Mills. 1991. Plant Analysis Handbook. Micro-Macro Publishing. pp. 195-203.
  15. Jonson, C.R. 1984. Phosphorus nutrition on mycorrhizal colonization photosynthesis, growth and nulrìcnt composilÍon of Citrus aurantium. Plant and Soil 80:35-42. https://doi.org/10.1007/BF02232937
  16. Kesseli. R.V., O. Ochoa, and R.W. Michelmore. 1991. Origin of Lactuca sativa (lettuce). Genome 34:430-436. https://doi.org/10.1139/g91-065
  17. Koide, R.T. and B. Mosse. 2004. A histor of research on arbuscular mycorrhiza. Mycorrhiza 14:145-163. https://doi.org/10.1007/s00572-004-0307-4
  18. Olsen. J.K., J.K. Schaefer, and M.N. Hunter. 1996. Response of capsicum (Capsicum annuum L.), sweet corn (Zea mays L.) and tomato (Lycopersicon esculantum Mill.) to inoculation with vesicular arbuscular mycorrhizae. Aust J. Agric. Res. 47:651-671. https://doi.org/10.1071/AR9960651
  19. Olsen, J.K., J.K. Schaefer, and M.N. Hunter. 1999. Effects of mycorrhizae, established from an existing intact hyphal network, on the growth response of capsicum (Capsicum annuum L.) and tomato (Lycopersicon esculantum Mill.) to five rates of applied phosphorus. Aust J. Agric. Res 50:223-237. https://doi.org/10.1071/A97167
  20. Olsen. J.K., J.K. Schaefer. and M.N. Hunter. 1999. Effects of a network of mycorrhizae on capsicum (Capsicum annuum L.) grown in the field with five rates of applied phosphorus. Aust J. Agric. Res. 50:239-252. https://doi.org/10.1071/A98008
  21. Ortas, I., D. Ortakci. Z. Kaya, A. Cinar, and N. Onelge. 2002. Mycorrhizal dependency of sour orange in relation to phosphorus and zinc nutrition. J. Plant Nutr. 25: 1263-1279. https://doi.org/10.1081/PLN-120004387
  22. Phillips, J.M . and D.S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55:158-161. https://doi.org/10.1016/S0007-1536(70)80110-3
  23. Rillig, M.C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84:355-363. https://doi.org/10.4141/S04-003
  24. Rillig, M.C. and D.L. Mummey. 2006. Mycorrhizas and soil structure. New Phytol. 171 :41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
  25. Ryder. E.J. and T.W. Whitaker. 1976. Lettuce. In: Simmonds N.W. (Eds.). Evolution of Crop Plants. Longman, London, pp. 39-41.
  26. SAS Institute. 1990. SAS User Guide. Version 6.08. SAS Institute Inc., SAS Circle, Box 8000, Cary. NC, 27515-800010.
  27. Smith, S.E. and D.J. Read. 1997. Mycorrhizal Symbiosis. Academic Press, London, p. 605.
  28. Sohn. B.K., K.Y. Kim. S.J. Chung. W.S. Kim, S.M. Park, J.K. Kang, Y.S. Rim. J.S. Cho, T.H. Kim, and J.H. Lee. 2003. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci. Hort. 98: 173-183. https://doi.org/10.1016/S0304-4238(02)00210-8
  29. van der Heijden, M.G., R. Streitwolf-Engel. R. Riedl. S. Siegrist, A. Neudecker. K. Ineichen, T. Boller. A. Wiemken, and I.R. Sanders. 2006. mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol. 172:739-752. https://doi.org/10.1111/j.1469-8137.2006.01862.x
  30. Watanabe. Y., F. Uchiyama. and K. Yoshida. 1994. Compositional changes in spinach (Spinacia oleracea L.) grown in the summer and in the fall. J. Jpn. Soc. Hortic. Sci. 62:889-895. https://doi.org/10.2503/jjshs.62.889
  31. Yano-Melo, A.M .. L.C. Maia, O.J. Saggin, J.M. Lima-Filho, and N.F. Melo. 1999. Effect of arbuscular mycorrhizal fungi on the acclimatization of micropropagated banana plantlets. Mycorrhiza 9:119-123. https://doi.org/10.1007/s005720050009