화학비료, 가축분뇨 및 퇴비의 질소동위원소비

Nitrogen Isotope Compositions of Synthetic Fertilizer, Raw Livestock Manure Slurry, and Composted Livestock Manure

  • 임상선 (전남대학교 농업생명과학대학 지역바이오시스템공학과) ;
  • 이상모 (서울대학교 농생명과학공동기기원) ;
  • 이승헌 (한국농어촌공사 농어촌연구원) ;
  • 최우정 (전남대학교 농업생명과학대학 지역바이오시스템공학과)
  • Lim, Sang-Sun (Department of Rural & Biosystems Engineering, Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Lee, Sang-Mo (National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Lee, Seung-Heon (Rural Research Institute, Korea Rural Community Corporation) ;
  • Choi, Woo-Jung (Department of Rural & Biosystems Engineering, Institute of Agricultural Science & Technology, Chonnam National University)
  • 투고 : 2010.07.14
  • 심사 : 2010.08.06
  • 발행 : 2010.08.31

초록

화학비료, 가축분뇨 및 퇴비 등 주요 질소원의 질소동위원소비 (${\delta}^{15}N$) 차이를 조사하기 위해 각각 8, 4, 37점의 시료를 채취하여 ${\delta}^{15}N$을 분석하였다. 평균 ${\delta}^{15}N$ 값은 화학비료가 $-1.5{\pm}0.5$‰ (범위: -3.9~+0.5‰‰), 가축분뇨가 $+6.3{\pm}0.4$‰ (+5.3~+7.2‰), 가축분퇴비가 $+16.0{\pm}0.4$‰ (+9.3~+20.9‰)였다. 화학비료가 타 질소원에 비해 ${\delta}^{15}N$ 값이 낮은 것은 화학비료 제조시 이용하는 질소원인 대기 $N_2$${\delta}^{15}N$ 값 (0‰)을 반영하기 때문이다. 반면, 가축분에 비해 퇴비의 ${\delta}^{15}N$ 값이 높은 것은 퇴비화 과정 중 일어나는 질소손실 (특히, 암모니아 휘산)과 관련된 질소동위원소분할효과 ($^{14}N$의 손실속도>$^{15}N$의 손실속도)에 의한 퇴비 중 $^{15}N$ 농축에 의한 결과로 판단된다. 따라서, 본 연구는 ${\delta}^{15}N$ 분석을 통해 현재 우리나라 농업 시스템에서 가장 널리 이용되고 있는 두 가지 질소원 (화학비료와 퇴비)을 구분할 수 있음을 보여준다.

To investigate the difference in N isotope ratio ($^{15}N/^{14}N$, expressed as ${\delta}^{15}N$) among N sources (synthetic fertilizer, livestock manure, and manure compost), eight synthetic fertilizer, four livestock manure, and thirty-seven compost samples were collected and analyzed for ${\delta}^{15}N$. The mean ${\delta}^{15}N$ values of N sources were $-1.5{\pm}0.5$‰ (range: -3.9 to +0.5‰) for synthetic fertilizer, $+6.3{\pm}0.4$‰ (+5.3 to +7.2‰) for manure, and $+16.0{\pm}0.4$‰ (+9.3 to +20.9‰) for compost. The lower ${\delta}^{15}N$ of synthetic fertilizer was attributed to its N source, atmospheric $N_2$ of which ${\delta}^{15}N$ is 0‰ Meanwhile, more $^{15}N$-enrichment of compost than manure was assumed to be resulted from N isotopic fractionation (faster loss of $^{14}N$-bearing compound than $^{15}N$) associated with N loss particularly via $NH_3$ volatilization during composting. Therefore, our study shows that ${\delta}^{15}N$ values could successfully serve in discriminating two major N sources (synthetic fertilizer and compost) in agricultural system.

키워드

참고문헌

  1. Bateman. A.S. and S.D. Kelly. 2007. Fertilizer nitrogen isotope signatures. Isot. Environ. Healt. S. 43 :237-247. https://doi.org/10.1080/10256010701550732
  2. Bateman. A.S., S.D. Kelly. and T.D. Jickells. 2005. Nitrogen isotope relationships between crops and fertilizer: implication for using nitrogen isotope analysis as an indicator of agricultural regime. J. Agr. Food Chem. 53:5760-5765. https://doi.org/10.1021/jf050374h
  3. Bremner, J.M. 1996. Nitrogen-total. p. 1085-1121. In D.L. Sparks et al. (ed.) Methods of Soil Analysis. Part 3. Chemical Methods, American Society for Agronomy, Madison, Wisconsin, USA.
  4. Broadbent, F.E., R.S. Rauschkolb. K,A. Lewis, and G.Y. Chang. 1980. Nilrogen.15 enrichment of soils and soil-derived nitrate. J. Environ. Qual. 2:363-365.
  5. Chang. S.X. and W.J. Choi. 2009. Application of the stable nitrogen isotope technique in studying ecosystem processes. p. 148-171. In: Lectures in Modern Ecology (IV): Theory and Applications. Higher Education Press, Bejing,China.
  6. Choi, W.J. 2002. Natural $^{15}N$ abundances and source identification of nitrogen in soil-plant-groundwater system as affected by chemical fertilizer and composted manure. Ph.D. Thesis, Seoul National University. Suwon, Korea.
  7. Choi, W. J., H.M. Ro. and E.A. Hobbie. 2003. Patterns of natural 15N in soils and plants from chemically and organically fertilized uplands. Soil Biol. Biochem. 35:1493-1500. https://doi.org/10.1016/S0038-0717(03)00246-3
  8. Choi. W.J., M.A. Arshad. S.X. Chang, and T.H. Kim. 2006. Grain $^{15}N$ of crops applied with organic and chemical fertilizers in a four-year rotation. Plant Soil. 284:165-174. https://doi.org/10.1007/s11104-006-0038-8
  9. Choi. W.J., S.M, Lee. H.M. Ro, K.C. Kim, and S.H. Yoo. 2002 Natural $^{15}N$ abundances of maize and soil amended with urea and composted pig manure. Plant Soil. 245:223-232. https://doi.org/10.1023/A:1020475017254
  10. Choi, W.J., G.H. Han. S.M. Lee, G.T. Lee, K.S. Yoon. S.M. Choi, and H.M. Ro. 2007. Impacl of land-use types on nitrate concentration and $^{15}N$ in unconfined groundwater in rural areas of Korea. Agricul. Ecosyst. Environ. 120:259-268. https://doi.org/10.1016/j.agee.2006.10.002
  11. Feast, N.A., K.M. Hiscock, P.F. Dennis. and J.N. Andrews. 1998. Nitrogen isotope hydrochemistry and denitrification within the Chalk aquifer system of north Norfolk, UK. J. Hydrol. 211:233-252. https://doi.org/10.1016/S0022-1694(98)00245-5
  12. Flipse, Jr. W.J. and F.T. Bonner. 1985. Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York. Ground water. 23:59-67. https://doi.org/10.1111/j.1745-6584.1985.tb02780.x
  13. Freyer. H.D. and A.I.M. Aly, 1974. Nilrogcn-15 variations in fertilizer nitrogen. J. Environ. Quality. 3:405-406.
  14. Gormly, J.R. and R.F. Spalding. 1979. Sources and concentrations of nitrate-nitrogen in ground water of the Central Platte Region. Nebraska. Ground Water.3 :291-301. https://doi.org/10.1111/j.1745-6584.1979.tb03323.x
  15. Hao. X., C. Chang, and F.J. Larney. 2004. Carbon. nitrogen balances and greenhouse gas emission during feedlot manure composting. J. Environ. Qual. 33 :37-44. https://doi.org/10.2134/jeq2004.0037
  16. Hauck, R.D. 1982. Nitrogen-isotope ratio analysis. p. 735-779. In: AL. Page et al. (ed.) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, USA.
  17. Heaton, T.H.E. 1984. Sourccs of nitrate in phreatic groundwater in the western Kalihari. J. Hydrol. 67:249-259. https://doi.org/10.1016/0022-1694(84)90244-0
  18. Karamanos,R.E. and D.A. Rennie. 1980. Variations in natural nitrogen-15 abundances as an aid in tracing fertilizer nitrogen transformations. Soil Sci. Soc. Am. J. 44:57-62. https://doi.org/10.2136/sssaj1980.03615995004400010013x
  19. Karamanos, R.E. and D.A. Rennie. 1981a. The isotope composition of residual fertilizer nitrogen in soil column. Soil Sci. Soc. Am. J. 45 :316-321. https://doi.org/10.2136/sssaj1981.03615995004500020018x
  20. Karamanos, R.E. and D.A. Rennie. 1981b. Changes and significance in natural $^{15}N$ abundance in residual nitrogen fertilizer studies. Can. J. Soil Sci. 61 :553-559. https://doi.org/10.4141/cjss81-064
  21. Kerley, S.J. and S.C. Jarvis. 1996.Preliminary studies on the Impact of excreted N on cycling and uptake of N in pasture systems using natural abundance stable isotope discrimination. Plant Soil. 178:287-294. https://doi.org/10.1007/BF00011595
  22. Kim, J.Y., W.J. Choi, S.S. Lim, J.H. Kwak, S.X. Chang. H.Y. Kim, K.S. Yoon, and H.M. Ro. 2008. Changes in nitrogen isotopic compositions during composting of cattle feedlot manure: effects of bedding material type. Bioresour. Technol. 99:5452-5458. https://doi.org/10.1016/j.biortech.2007.11.012
  23. Kohl, D.H., G.B. Shcarer. and B. Commoner. 1973. Variation of $^{15}N$ in com and soil following application of fertilizer nitrogen. Soil Sci. Soc. Am. Proc. 37:888-892. https://doi.org/10.2136/sssaj1973.03615995003700060028x
  24. Komor, S.C. and Jr. H.W. Anderson. 1993. Nitrogen isotope as indicator of nitrate sources in Minnesota sand-plain aquifers. Ground water. 31 : 260-270. https://doi.org/10.1111/j.1745-6584.1993.tb01818.x
  25. Kreitler, C.W. 1975. Determining the source of nitrate in ground water by nitrogen isotope studies. Report of Investigations No 83. Bureau of Economic Geology. University of Texas, Austin. Texas. USA.
  26. Kreitler. C. W. 1977. Nitrogen isotopes of soil and ground water nitrate, Lockhart and Taylor alluvial fans, central Texas. Geol. Soc. Am. 96:1058-1059.
  27. Kreitler. C.W, 1979. Nitrogen-isotope ratio studies of soils and ground water ntrate from alluvial fan aquifers in Texas. J. Hydrol. 42:147-170. https://doi.org/10.1016/0022-1694(79)90011-8
  28. Kreitler. C.W, S.E. Ragone, and B.G. Katz. 1978. N15/N14 ratios of ground-water nitrate, Long Island, New York. Ground Water. 16:404-409. https://doi.org/10.1111/j.1745-6584.1978.tb03254.x
  29. Larney, F.J., D.M. Sullivan. K.E. Buckley, and B. Eghball. 2006. The role of composting in recycling manure nutrients. Can. J. Soil Sci. 86:597-611 https://doi.org/10.4141/S05-116
  30. Mariotti, A. and R. Letolle. 1977. Application of nitrogen-isotope studies to hydrology and hydrogeology: analysis of the peculiar case of the Melarchez Basin (Seinc-et.Marne, France). J. Hydrol. 33: 157-172. https://doi.org/10.1016/0022-1694(77)90105-6
  31. Meints, V.W., L.V. Boone, and L.T. Kurtz. 1975. Natural $^{15}N$ abundance in Soil, leaves and gains as influenced by long-term additions of fertilizer N at several rates. J. Environ. Qual. 4:486-490.
  32. Shearer. G.B. and J.O. Legg. 1975. Variations in the natural abundance of $^{15}N$ wheal plants in relation to fertilizer nitrogen application. Soil Sci. Soc. Am. Proc. 39:896-901. https://doi.org/10.2136/sssaj1975.03615995003900050030x