종 분석을 이용한 시설재배지 토양 구리와 아연의 집적, 이동성 및 유효성 평가

Accumulation, Mobility, and Availability of Copper and Zinc in Plastic Film House Soils Using Speciation Analysis

  • 김록영 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 성좌경 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 이주영 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 이예진 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 정석재 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 이종식 (농촌진흥청 국립농업과학원 토양비료관리과) ;
  • 장병춘 (농촌진흥청 국립농업과학원 토양비료관리과)
  • Kim, Rog-Young (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Sung, Jwa-Kyung (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Ju-Young (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Ye-Jin (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Jung, Sug-Jae (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Jong-Sik (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA) ;
  • Jang, Byoung-Choon (Soil & Fertilizer Management Division, National Academy of Agricultural Science, RDA)
  • 투고 : 2010.11.30
  • 심사 : 2010.12.17
  • 발행 : 2010.12.31

초록

Cu and Zn can be accumulated in plastic film house soils by long-term application of livestock manure or compost. The mobility and bioavailability of Cu and Zn accumulated in soils are strongly influenced by their chemical or geochemical species in soils. In order to assess the accumulation, mobility, and bioavailability of Cu and Zn in plastic film house soils, we determined their geochemical species using a sequential extraction, grouped into three pods: the total pool, the potentially mobil pool, and the mobil pool. Total contents of Cu and Zn, ranged from 14.9 to 53.1 mg $kg^{-1}$ for Cu and from 55.4 to 169 mg $kg^{-1}$ for Zn, lied by far below the soil contamination standards, but exhibited little accumulation compared with their geogenic concentrations. Mobile contents of Cu and Zn and their percentage of total contents were strongly affected by soil pH in addition to total contents and soil organic matter. Mobile contents of Cu, ranged from <0.01 to 1.71 mg $kg^{-1}$, showed their minimum between pH 5.0 and 6.0 and increased above pH 6.0 to 8.0. In contrast, mobile contents of Zn, varied from <0.01 to 12.4 mg $kg^{-1}$, showed their minimum above pH 7.0 and increased strongly with decreasing pH below 5.5~6.0. Potentially mobile and total contents of Cu and Zn rose with ascending soil organic matter. To assess ecological and toxic effects of Cu and Zn in soils, mobile and potentially mobile contents, as bioavailable and potentially bioavailable pools, should be considered more important than total contents.

키워드

참고문헌

  1. Agbenin, J.O., G. Welp, and M. Danko. 2010. Fractionation and prediction of copper, lead and zinc uptake by two leaf vegetables from their geochemical fractions in urban garden fields in northern Nigeria. Comm. Soil Sci. Plant Anal. 41:1028-1041. https://doi.org/10.1080/00103621003648168
  2. Blume, H.P., G.W. Bruemmer, R. Horn, E. Kandeler, I. Koegel-Knabner, R. Kretzschmar, K. Stahr, and B.M.Wilke. 2010. Scheffer/Schachtschabel- Lehrbuch der Bodenkunde (16th ed.). Spektrum Akademischer Verlag, Heidelberg, Berlin, Germany.
  3. Bruemmer, G.W. 1986. Heavy metal species, mobility and availability in soils. In Bernhard (ed) The importance of chemical speciation in environmental processes. Springer Veralg, Berlin, Heridelberg, New York.
  4. Bruemmer, G.W., J. Gerth, and U. Herms. 1986. Heavy metal species, mobility and availability in soils. Z. Planzenernaehr. Bodenk. 149:382-398, Weinheim.
  5. Cannon, H.L., G.G. Connally, J.B. Epstein, J.G. Parker, I. Thornton, and G. Wixson. 1978. Rocks: The geologic source of most trace elements. In H.L. Cannon (ed.) Geochemistry and the Environment - Distribution of trace elements related to the occurrence of certain cancers, cardiovascular diseases, and urolithiasis. A Report of the workshop at South Seas Plantation, Captiva Island, FL. Geochem. Environ. 3:17-31. Washington, DC.
  6. Duees, G. 1987. Untersuchungen zu den Bindungsformen und oekologisch wirksamen Fraktoinen ausgewaehlter toxischer Schwermetalle in ihrer Tiefenverteilung in Hamburger Boeden. Ph.D. Thesis, p. 266, University of Hamburg, Hamburg.
  7. GARES (Gyeonggido Agricultural Research & Extension Services). 2008. Total management system for the safety of vegetables in plastic film house. Annual report. LS0902. http://www.nongup.gyeonggi.kr/Web/renewal/tech/tech_ research_lst.jsp.
  8. German BBodSchV (German Federal Soil Protection and Contaminated Sites Ordinance). 1999. BBodSchV vom 12. Juli 1999 (BGBl. I S. 1554), geaendert durch Artikel 2 der Verordnung vom 23. Dezember 2004 (BGBl. I S. 3758). Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin.
  9. Gleyzes, C., S. Tellier, and M. Astruc. 2002. Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. Trends Anal. Chem, 21:451-467. https://doi.org/10.1016/S0165-9936(02)00603-9
  10. Gupta, S.K., M.K. Vollmar, and R. Krebs. 1996. The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Sci. Total. Environ. 178:11-20. https://doi.org/10.1016/0048-9697(95)04792-1
  11. Herms, U. 1982. Untersuchungen zur Schwermetalloeslichkeit in kontaminierten Boeden und kompostierten Siedlungsabfaellen in Abhaengigkeit von Bodenreaktion, Redoxbedingungen und Stoffbestand. Ph.D. Thesis, p. 269, University of Kiel, Kiel.
  12. Herms, U. and G.W. Bruemmer. 1980. Einfluss der Bodenreaktion auf Loeslichkeit und tolerierbare Gesamtgelate an Nickel, Kupfer, Yink, Cadmium und Blei in Boeden und kompostierbaren Siedlungsabfaellen. Landwirtsch. Forsch. 33:408-423, Bonn.
  13. Herms, U. and G.W. Bruemmer. 1984. Einflussgroessen der Schwermetalloeslichkeit und -bindung in Boeden. Z. Planzenernaehr. Bodenk. 147:400-424, Weinheim. https://doi.org/10.1002/jpln.19841470313
  14. Hornburg. V. 1991. Untersuchungen zur Mobilitaet und Verfuegbarkeit von Cadmium, Zink, Blei und Kupfer in Boeden. Ph.D. Thesis, p. 288, University of Bonn, Bonn.
  15. Hornburg, V. and G.W. Bruemmer. 1993. Verhalten von Schwermetallen in Boeden. I. Untersuchungen zur Schwermetallmobilitaet. Z. Planzenernaehr. Bodenk. 156:467-477, Weinheim. https://doi.org/10.1002/jpln.19931560603
  16. Kataba-Pendias, A. and H. Pendias. 2001. Trace elements in soils and plants. 3rd ed. CRC, Washington.
  17. Kim, T.S., D.H. Kim, J.K. Yoon, J.G. Park, I.R. Chung, J.H. Kim, and H. Kim. 2006. Heavy metal distribution in Korean soils with regard to land use and analytical method. Abstract. Conference of the Korean Society for Soil and Groundwater Environment. pp. 242-246. 14.04. 2006. Dongguk University, Seoul.
  18. Kuehnen, V. and H.E. Godlbach. 2004. Heavy metal fluxes and balances on selected farms with different production methods. USL, 118, p. 213, University of Bonn, Bonn.
  19. Liebe, F. 1999. Spurenelemente in Boeden und Pflanzen Nordrhein-Westfalens - Gehalte verschiedener chemischer Fraktionen in Boeden und deren Beziehung zur Bodenreaktion und den Gehalten in Pflanzen. Ph.D. Thesis, p. 375, University of Bonn, Bonn.
  20. ME (Ministry of Environment, Republic of Korea). 2009a. Environmental statistics yearbook. No. 22. Gwacheon.
  21. ME (Ministry of Environment, Republic of Korea). 2009b. Enforcement Decree of the Soil Environment Conservation Act. 12th. amended. No. 333. 2009.6.25, Gwacheon.
  22. ME (Ministry of Environment, Republic of Korea). 2009c. Soil Contamination Standards Methods. 2009.09, Gwacheon.
  23. MLTM (Ministry of Land, Transport and Maritime Affairs, Republic of Korea). 2006. Act on the Management of Discharge of Land-based Pollutants unto the Coast. 2006.03, Gwacheon.
  24. NIAST. 2000. Methods of soil and plant anlysis. National Institute of Agricultural Science and Technology, RDA, Suwon.
  25. Nolan, A.L., M.J. McLaughlin, and S.D. Mason. 2003. Chemical speciation of Zn, Cd, Cu, and Pb in pore waters agricultural and contaminnated soils using Donnan dialysis. Environ. Sci. Technol. 37:90-98. https://doi.org/10.1021/es025966k
  26. Nriagu, J.O. and J.M. Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature. 333/6169: 134-139. https://doi.org/10.1038/333134a0
  27. RDA. 2009. Official definition and standards for fertilizer. No. 2009-30, Suwon, Korea.
  28. Rietz, E., D. Sauerbeck, F. Timmermann, and A. Lueders. 1984. Plant availability and mobility of cadmium, lead, zinc, and copper as influenced by liming of a heavymetal- contaminated soil. Landwirtsch. Forsch. 40:295-306, Bonn.
  29. Swiss FOEFL (Swiss Federal Office of Environment, Forests and Landscape). 1986. Ordinance Relating to Pollutants in Soil. Nr. 814.12, p. 17, Berne.
  30. Tessier, A., P.G.C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-851. https://doi.org/10.1021/ac50043a017
  31. Verloo, M. and F. Tack. 1988. In Grondontleding en bemestingsadviezen. Genootschap Plantenproduktie en Ekosfeer, pp. 6, KVIV, Antwerpen.
  32. Voegelin, A., K. Barmettler, and R. Kretzschmar. 2003. Heavy metal release from contaminated soils: Comparison of column leaching and batch extraction results. J. Environ. Qual. 32:865-875. https://doi.org/10.2134/jeq2003.0865
  33. Yoon, J.K., D.H. Kim, T.S. Kim, J.G. Park, I.R. Chung, J.H. Kim, and H. Kim. 2009. Evaluation on natural background of the soil heavy metals in Korea. J. Soil & Groundwater Env. 14:32-29.
  34. Young, S.D., H. Zhang, A.M. Tye, A. Maxted, C. Thums, and I. Thornton. 2006. Characterizing the availability of metals in contaminated soils: I. The solid phase: Sequential extraction and isotopic dilution. Soil Use Manage. 21:450-458.
  35. Zeien, H. and G.W. Bruemmer. 1989. Chemical extractions to identify heavy metal binding forms in soils. Mitt. Dt. Bodenkundl. Ges. 59:505-510.