유기자재 종류별 혼합비율이 2년생 하이부시 블루베리의 유목 생육과 토양환경에 미치는 영향

Effect of Organic Substrates Mixture Ratio on 2-year-old Highbush Blueberry Growth and Soil Chemical Properties

  • 김홍림 (농촌진흥청 국립원예특작과학원 남해출장소) ;
  • 김형득 (농촌진흥청 국립원예특작과학원 남해출장소) ;
  • 김진국 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 곽용범 (농촌진흥청 국립원예특작과학원 남해출장소) ;
  • 최영하 (농촌진흥청 국립원예특작과학원 남해출장소)
  • Kim, Hong-Lim (Namhae Sub-Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Hyoung-Deug (Namhae Sub-Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Jin-Gook (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwack, Yong-Bum (Namhae Sub-Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Choi, Young-Hah (Namhae Sub-Station, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 투고 : 2010.09.02
  • 심사 : 2010.12.20
  • 발행 : 2010.12.31

초록

블루베리는 유기물 함량이 높고 물리성이 양호한 산성토양에서 안정적인 생육을 기대할 수 있다. 그러나 국내 작물 재배토양은 배수가 불량하고 유기물 함량이 낮은 알칼리 토양이 대부분이다. 따라서 블루베리 재배 농가들은 적합한 토양으로 개량하기 위하여 피트모스에 크게 의존하고 있으나, 작물생육과 경제성이 고려된 혼합비율의 정보가 미흡한 실정이다. 본 연구는 경제성과 안정생육을 고려한 적정 피트모스 혼합비율 구명과 이와 비슷한 물리 화학적 특성을 가진 톱밥과 코코피트의 적용 가능성을 검토하고자 본 연구를 수행하였다. 본 연구에 사용된 유기자재는 피트모스, 코코피트 그리고 신선한 톱밥이며, 각각의 유기자재는 토양에 부피비율로 0%, 12.5%, 50% 그리고 100%로 혼합하여 처리하였다. 시험 후 유기자재별 혼합비율에 따른 토양 pH는 피트모스와 톱밥이 각각 100%인 처리구가 3.67과 3.73으로 가장 낮았으며, 피트모스 50% 혼합구가 5.30으로 뒤를 이었다. 유기물 함량은 모든 자재가 혼합비율과 같은 경향을 나타냈으며, 이와 같은 경향은 코코피트 혼합구의 치환성 칼리 함량에서도 동일하였다. 그러나 유효인산과 치환성 칼슘과 마그네슘 함량은 혼합비율이 증가할수록 감소하는 경향이었다. 처리별 엽중 질소함량은 피트모스와 코코피트 처리에서 혼합비율이 증가할수록 감소하는 경향을 나타냈으며, 톱밥 처리는 혼합비율에 따른 경향이 나타나지 않았다. 인산 함량은 톱밥과 코코피트 처리에서 혼합비율이 증가할수록 감소하는 경향을 나타냈으나, 칼리 함량은 증가하는 경향이었고, 칼슘과 마그네슘 함량은 유기자재간 혼합비율간 차이가 없었다. 유기자재별 혼합비율에 따른 블루베리의 초장, 경경, 건물중 등의 생육은 피트모스 50%> 피트모스 12.5%> 코코피트 12.5% 순 이었으며, 피트모스 100% 처리구의 생육은 매우 저조하였다. 따라서 블루베리의 토양환경 개선과 우량한 생육을 위한 토양 개선자재로서는 피트모스가 가장 효과적이었음을 확인하였으며, 경제성을 고려한 혼합 비율은 25-50% 범위가 타당하다 보겠다.

The blueberry farming requires the soil condition of well-drainage, pH of 4.5 to 5.2, and high in organic matters for stable growth and development. Most of soil type of cultivated land in Korea, however, belongs to alkaline soils with low organic matter content and poor drainage. Therefore, the blueberry farmers use peat moss heavily to improve the soil condition, but the guideline on the effective and economic ratio of peat moss is not established yet. This study was performed to determine the cost effective peat moss ratio for amending soils, and to investigate the feasibility of using sawdust and coco peat as soil amendments. Peat moss, coco peat and sawdust are mixed with soil at the ratio of 0, 12.5, 50 and 100% (v/v). Among 3 organic materials with various mixture ratios, the pH of soil was the lowest in 100% peat moss and sawdust mixtures (pH 3.67 and pH 3.73, respectively), followed by pH 5.30 at 50% peat moss. The soil organic matter content are directly proportional to the mixture ratios in all three organic materials and the same trend was observed in the variation of content of exchangeable potassium in the coco peat treatments. On the contrary, the content of available phosphate, exchangeable calcium and magnesium decreased with increasing the ratio of organic materials. The nitrogen content in the leaves decreased as increasing the ratio of peat moss and coco peat in soil, but not of sawdust. The content of phosphate decreased but potassium increased as the ratio of sawdust and coco peat increased. There was no clear difference in the contents of magnesium and calcium among 3 organic materials. The plant height, stem diameter and dry weight of blueberry plants were the highest in 50 % peat moss, followed by 12.5% peat moss and 12.5% coco peat. The plants in 100% peat moss showed very poor growth. It can be concluded that peatmoss, when applied and managed appropriately, will be a good material for improving soil condition as well as securing desirable growth for blueberry. Upon coupling economic aspect, the optimum mixing ratio of peatmoss for blueberry farming is approximately 25-50%.

키워드

참고문헌

  1. Abad, M., P. Noguera, R. Puchades, A. Maquieira, and V. Noguera. 2002. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour. Technol. 82:241-245. https://doi.org/10.1016/S0960-8524(01)00189-4
  2. Argo, W.R. 1998. Roots medium chemical properties. Hort Technology. 8:481-490.
  3. Beardsell, D.V., D.G. Nichols, and D.L. Jones. 1979. Physical properties of nursery potting-mixtures. Scientia Horticulturae. 11:1-8. https://doi.org/10.1016/0304-4238(79)90048-7
  4. Brown, J.C. and A.D. Draper. 1980. Differential response of blueberry (Vaccinium) progenies to pH and subsequent use of iron. J. Am. Soc. Hortic. Sci. 105:20-24.
  5. Coville, F.V. 1910. Experiments in blueberry culture. USDA Bul. 193.
  6. da SILVA, F.F., R. Wallach, and Y. Chen. 1993. Hydraulic properties of sphagnum peat moss and tuff (scoria) and their potential effects on water availability. Plant and Soil. 154:119-126. https://doi.org/10.1007/BF00011080
  7. Epstein, E., E.B. Keane, J.J. Meisinger, and J.O. Legg. 1977. Mineralization of nitrogen from sewage sludge and sludge compost. In Agron. Abstr., Annual Meetings, Los angeles, California. 25-32.
  8. Gough, R.E. 1994. The highbush blueberry and its management. Food Products Press, New York, USA, Chapter 1.
  9. Hanson, E. and J. Hancock. 1996. Managing the nutrition of highbush blueberries. Extension Bulletin E-2011, Michigan State University.
  10. Ha, S.K., M.S. Kim, J.S. Ryu, G.L. Jo, S.C. Choi, Y.S. Kim, M.T. Choi, B.K. Ahn, H.W. Kim, C.Y. Kim, Y.H. Lee, and S.H. Yang. 2010. Monitoring of chemical properties for the upland soils in korea. Korea .J. Soil Sci. Fert. 43:357.
  11. Haynes, R.J. and R.S. Swift. 1985. Effects of soil acidification on the chemical extractability of Fe, Mn, Zn and Cu and their uptake by highbush blueberry plants. Plant and Soil. 84:201-212. https://doi.org/10.1007/BF02143184
  12. Holmes, R.S. 1960. Effect of phosphorus and pH on iron chlorosis of the blueberry in water culture. Soil Sci. 90:374-379. https://doi.org/10.1097/00010694-196012000-00010
  13. Horisawa, S., M. Sunagawa, Y. Tamai, Y. Matsuoka, T. Miura, and M. Terazawa. 1999. Biodegradation of nonlignocellulosic substances I1: physical and chemical properties of sawdust before and after use as artificial soil. J Wood Sci. 45:492-497. https://doi.org/10.1007/BF00538959
  14. Kang, J.Y., N.S. Park, H.H. Lee, and H.G. Kim. 2004. Determination of water retention characteristics of organic and inorganic substrates for horticulture by european standard method. K. J. Soil Sci. Fert. 37:55-58.
  15. Kim, H.L., J.H. Lim, B.K. Sohn, and Y.J. Kim. 2003. Chemical properties of cut-flower rose-growing soils in plastic film houses. K. J. Soil Sci. Fert. 36:113-118.
  16. Korcak, R.F. 1989. Variation in nutrient requirements of blueberries and other Calcifuges. HortScience. 24:573-578.
  17. Kreij C. and J.L. Leeuwen. 2001. Growth of pot plants in treated core dust as compared to peat. Commun Soil Sci Plant Anal 32:2255-2265. https://doi.org/10.1081/CSS-120000281
  18. Lee, H.H., S.K. Ha, and K.H. Kim. 2007. Optimum condition of the coir-based substrate for growth of red pepper (Capsicum annuum L.) plug seedlings. K. J. Soil Sci. Fert. 40:369-376.
  19. Lee, Y.H., S.T. Lee, J.Y. Heo, M.G. Kim, K.P. Hong, W.D. Song, C.W. Rho, J. H. Lee, W.T. Jeon, B.G. Ko, K.A. Roh, and S.K. Ha. 2010. Monitoring of chemical properties from paddy soil in gyeongnam province. K. J. Soil Sci. Fert. 43:140-146.
  20. Olayinka, A. and A. Adebayo. 1985. The effect of methods of application of sawdust on plant growth, plant nutrient uptake and soil chemical properties. Plant and Soil. 86:47-56. https://doi.org/10.1007/BF02185024
  21. RDA. 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Rural Development Administration, Korea.
  22. Schmidt, B.M., A.B. Howell, B. Mceniry, C.T. Knight, D. Seigler, J.W. Erdman Jr, and M.A. Lila. 2004. Effective separation of potent antiproliferation and antiadhesion components from wild blueberry (Vaccinium angustifolium Ait.) fruits, J. Agric. Food Chem.52:6433-6442. https://doi.org/10.1021/jf049238n
  23. Sellappan, S., C.C. Akoh, and G. Krewer. 2002. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem.50:2432 -2438. https://doi.org/10.1021/jf011097r
  24. Shinohara, Y., T. Hata, Y. Maruo, M. Hohjo, and T. Ito. 1999. Chemical and physical properties of the coconutfiber substrate and the growth and productivity of tomato (Lycopercicon esculentum Mill.) plants. Acta Hort. 481: 145-149.
  25. Sohn, B.K., J.S. Cho, J.G. Kang, J.Y. Cho, K.Y. Kim, H.W. Kim, and H. L. Kim. 1999. Physico-chemical properties of soils at red pepper, garlic and onion cultivation areas in Korea. K. J. Soil Sci. Fert. 32:123-131.
  26. White Jr, A. W., J.E. Giddens, and H.D. Morris. 1934. The effects of sawdust on crop growth and physical and biological properties of cecil soil. Soil Sci. Soc. Am. Proc. 23:365-368.
  27. 한국블루베리 협회. 2010. 블루베리뉴스. 9:3-5.