The Effect of Electron Beam Irradiation on Physicochemical Properties of Hansan Ramie

전자빔 조사된 한산모시의 물리화학적 특성변화

  • Choi, Hae-Young (Department of Clothing and Textiles, Chungnam National University) ;
  • Lee, Jung-Soon (Department of Clothing and Textiles, Chungnam National University)
  • Received : 2010.03.05
  • Accepted : 2010.07.19
  • Published : 2010.08.31

Abstract

Hansan ramie fibers were irradiated with an electron beam to improve the interfacial bonding in the manufacture of composites. The effect of electron beam irradiation was examined by SEM, chemical component analysis and the mechanical properties. The impurities on the surface of ramie and lignin were removed by electron beam irradiation, which increased the tensile strength of the ramie fibers. However, the excessive electron beam energy caused the degradation of ramie fibers, due probably to the reduced ${\alpha}$-cellulose. The reduction of ${\alpha}$-cellulose indicates the degradation of the cellulose chain, which usually leads to a decrease in fiber strength.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. 김성련, "피복재료학", 제1판, 교문사, 서울, 1996, p.64.
  2. 한산모시 대중화를 위한 방적기술 및 시제품 개발, 2004년도 서천군 한산모시 기계화 사업. 2005.
  3. J. M. Hong and H. S. Ryu, "Mechanical Properties and Fabric Handle of Hansan Ramie (Part I)", J Korean Soc Cloth Text, 1997, 21, 1315-1322.
  4. E. Sjostrom, "Wood Chemistry Fundamentals and Applications", 2nd Ed., Academic Press, Orlando, 1993, pp.163-188.
  5. A. K. Mohanty, M. Misra, and G. Hinrichsen, "Biofibres, Biodegradable Polymers and Biocompoistes: An Overview", Macromol Mater Eng, 2004, 276/277, 1-24.
  6. 조동환, "친환경 천연섬유를 활용하는 그린복합재료", 플라스틱 신기술, 2006, 8, 44-51.
  7. 한산모시 Global Business Brand 강화 산업, 방적모시 직물 평가 및 후가공 기술, 2008년도 지역연고사업진흥사업.
  8. 한산모시산업 활성화를 위한 학술 심포지엄, 2007.
  9. T. P. Nevell and S. H. Zeronian, "Cellulose Chemistry and Its Applications", Ellis Horwood Limited, Wiley, New York, 1985.
  10. A. K. Mubarak, N. Haque, A. Al-kafi, M. M. Alam, and M. Z. Abedin, "Jute Reinforced Polymer Composite by Gamma Radiation: Effect of Treatment with UV Radiation", Polym Plast Technol Eng, 2006, 45, 607-613. https://doi.org/10.1080/03602550600554141
  11. 이승구, 조동환, 박원호, 한성옥, "천연섬유를 이용한 친환경 복합재료", 섬유기술과 산업, 2004, 8, 378-396.
  12. P. L. T. Oldring, "Chemistry and Technology of UV and EB Formulation for Coatings, Inks and Paints", 1st Ed., SITA Technology, Lodon, 1991, Vol. 1-5.
  13. S. O. Han, D. Cho, W. H. Park, and L. T. Drzal, "Henequen/ poly(butylene succinate) Biocomposites: Electron Beam Irradiation Effects on Henequen Fiber and the Interfacial Properties of Biocomposites", Compos Interf, 2006, 13, 231-247. https://doi.org/10.1163/156855406775997123
  14. Y. H. Han, S. O. Han, D. Cho, and H. I. Kim, "Henequen/ Unsaturated Polyester Biocomposites: Electron Beam Irradiation Treatment and Alkali Treatment Effects on the Henequen Fiber", Macromolecular Symposia, 2006, 245/246, 539-548. https://doi.org/10.1002/masy.200651378
  15. H. Y. Choi, S. O. Han, and J. S. Lee, "Surface Morphological, Mechanical and Thermal Characterization of Electron Beam Irradiated Fibers", Appl Surf Sci, 2008, 255, 2466-2473. https://doi.org/10.1016/j.apsusc.2008.07.171
  16. S. O. Han, Y. B. Seo, and C. H. Lee, "Degradation of Cellulosic Fibers by Electron Beam Irradiation", Journal of Korea TAPPI, 2007, 39, 20-25.
  17. D. N. S. Hon and N. Shiraishi, "Wood and Cellulose Chemistry", 2nd Ed., Marcel Dekker Inc., New York, 2001, pp.525-555.
  18. H. Y. Choi, S. O. Han, and J. S. Lee, "The Effects of Surface and Pore Characteristics of Natural Fiber on Interfacial Adhesion of Henequen Fiber/PP Biocomposite", Compos Interf, 2009, 16, 359-376. https://doi.org/10.1163/156855409X450873