Effect of Solvents on Morphological and Mechanical Properties of Electrospun Poly(vinyl acetate) Nonwoven

용매가 전기방사한 Poly(vinyl acetate)(PVAc) 부직포의 형태 및 기계적 특성에 미치는 영향

  • Gu, Ja-Ram (Department of Textile Engineering, Chonbuk National University) ;
  • Ko, Jung-An (Department of Bionano System Engineering, Chonbuk National University) ;
  • Kim, Ick-Soo (Department of Functional Machinery and Mechanics, Faculty of Textile Science and Technology, Shinshu University) ;
  • Kim, Hwan-Chul (Department of Textile Engineering, Chonbuk National University) ;
  • Kim, Hak-Yong (Department of Textile Engineering, Chonbuk National University) ;
  • Khil, Myung-Seob (Department of Textile Engineering, Chonbuk National University)
  • 구자람 (전북대학교 섬유소재시스템공학과) ;
  • 고정안 (전북대학교 바이오나노시스템공학과) ;
  • 김익수 (일본 신슈대학교 섬유학부) ;
  • 김환철 (전북대학교 섬유소재시스템공학과) ;
  • 김학용 (전북대학교 섬유소재시스템공학과) ;
  • 길명섭 (전북대학교 섬유소재시스템공학과)
  • Received : 2010.02.02
  • Accepted : 2010.07.06
  • Published : 2010.08.31

Abstract

The effect of solvents on the surface morphology and mechanical properties of poly(vinyl acetate) nanofibrous nonwoven via electrospinning was investigated. The fiber diameters decreased with increasing boiling point of the solvents. Among the solvents used in this study, DMF was the best solvent that produced PVAc fibers with the thinnest diameter of ca $0.2\;{\mu}m$. Such a result can be explained by considering the high boiling point of a solvent, allowing sufficient time for a smaller segment of a charged jet during its flight to the collector.

Keywords

References

  1. J. Y. Park, I. H. Lee, and G. N. Bae, "Optimization of the Electrospinning Conditions for Preparation of Nanofibers from Polyvinylacetate(PVAc) in Ethanol Solvent", J Ind Eng Chem, 2008, 14, 707-713. https://doi.org/10.1016/j.jiec.2008.03.006
  2. A. Formhals, "Process and Apparatus for Preparing Artificial Threads", US Patent, 1,975,504(1934).
  3. G. C. Rutledge, M. Y. Shin, S. B. Warner, A. Buer, M. Grimler, and S. C. Ugbolue, National Textile Center Annual Report, M98-D01(1999).
  4. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, "A Review on Polymer Nanofibers by Electrospinning and Their Application in Nanocomposites", Compos Sci Technol, 2003, 63, 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  5. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, "Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes", Polymer, 2002, 43, 4403-4412. https://doi.org/10.1016/S0032-3861(02)00275-6
  6. V. Jacobs, R. D. Anandjiwala, and M. Maaza, "The Influence of Electrospinning Parameters on the Structural Morphology and Diameter of Electrospun Nanofibers", J Appl Polym Sci, 2010, 115, 3130-3136. https://doi.org/10.1002/app.31396
  7. P. K. Baumgarten, "Electrostatic Spinning of Acrylic Microfibers", J Colloid Interf Sci, 1971, 36, 71-79. https://doi.org/10.1016/0021-9797(71)90241-4
  8. T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, and P. Supaphol, "Effect of Solvents on Electro-spinnability of Polystyrene Solutions and Morphological Appearance of Resulting Electrospun Polystyrene Fibers", Eur Polym J, 2005, 41, 409-421. https://doi.org/10.1016/j.eurpolymj.2004.10.010
  9. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, "Characterization of Nano-structured Poly($\varepsilon$-caprolactone) Nonwoven Mats Via Electrospinning", Polymer, 2003, 44, 1287-1294. https://doi.org/10.1016/S0032-3861(02)00820-0
  10. Y. H. Jung, M. S. Cho, U. S. Lee, M. S. Khil, P. K. Pak, and H. Y. Kim, "Electrospun Poly(vinyl alcohol) Mats Prepared by Adding Malic Acid and Lactic Acid", Text Sci Eng, 2007, 44, 80-85.
  11. L. Wannatong, A. Sirivat, and P. Supaphol, "Effects of Solvents on Electrospun Polymeric Fibers: Preliminary Study on Polystyrene", Polym Inter, 2004, 53, 1851-1859. https://doi.org/10.1002/pi.1599
  12. K. H. Yoon, B. S. Hsiao, and B. Chu, "Formation of Functional Polyethersulfone Electrospun Membrane for Water Purification by Mixed Solvent and Oxidation Processes", Polymer, 2009, 50, 2893-2899. https://doi.org/10.1016/j.polymer.2009.04.047