DOI QR코드

DOI QR Code

Skeletal Muscle Dysfunction in Patients with Chronic Obstructive Pulmonary Disease

만성폐쇄성폐질환 환자에서 골격근 기능 이상

  • Kim, Ho-Cheol (Department of Internal Medicine, Gyeongsang National University School of Medicine) ;
  • Lee, Gi-Dong (Department of Internal Medicine, Gyeongsang National University School of Medicine) ;
  • Hwang, Young-Sil (Department of Internal Medicine, Gyeongsang National University School of Medicine)
  • 김호철 (경상대학교 의학전문대학원 내과학교실) ;
  • 이기동 (경상대학교 의학전문대학원 내과학교실) ;
  • 황영실 (경상대학교 의학전문대학원 내과학교실)
  • Received : 2010.02.01
  • Accepted : 2010.03.08
  • Published : 2010.03.30

Abstract

Patients with chronic obstructive pulmonary disease (COPD) frequently complain of dyspnea on exertion and reduced exercise capacity, which has been attributed to an increase in the work of breathing and in impaired of gas exchange. Although COPD primarily affects the pulmonary system, patients with COPD exhibit significant systemic manifestations of disease progression. These manifestations include weight loss, nutritional abnormalities, skeletal muscle dysfunction (SMD), cardiovascular problems, and psychosocial complications. It has been documented that SMD significantly contributes to a reduced exercise capacity in patients with COPD. Ventilatory and limb muscle in these patients show structural and functional alteration, which are influenced by several factors, including physical inactivity, hypoxia, smoking, aging, corticosteroid, malnutrition, systemic inflammation, oxidative stress, apoptosis, and ubiquitin-proteasome pathway activation. This article summarizes briefly the evidence and the clinical consequences of SMD in patients with COPD. In addition, it reviews contributing factors and therapeutic strategies.

Keywords

References

  1. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 2004;23:932-46. https://doi.org/10.1183/09031936.04.00014304
  2. Agusti AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J 2003;21:347-60. https://doi.org/10.1183/09031936.03.00405703
  3. Casaburi R, Gosselink R, Decramer M, Dekhuijzen RPN, Fournier M, Lewis MI, et al. Skeletal muscle dysfunction in chronic obstructive pulmonary disease: a statement of the American Thoracic Society and European Respiratory Society. Am J Respir Crit Care Med 1999;159:S1-40.
  4. Maltais F, LeBlanc P, Jobin J, Casaburi R. Peripheral muscle dysfunction in chronic obstructive pulmonary disease. Clin Chest Med 2000;21:665-77. https://doi.org/10.1016/S0272-5231(05)70176-3
  5. Gosker HR, Wouters EF, van der Vusse GJ, Schols AM. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr 2000;71:1033-47.
  6. Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med 1996;153:976-80. https://doi.org/10.1164/ajrccm.153.3.8630582
  7. Bernard S, LeBlanc P, Whittom F, Carrier G, Jobin J, Belleau R, et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;158:629-34. https://doi.org/10.1164/ajrccm.158.2.9711023
  8. Man WD, Hopkinson NS, Harraf F, Nikoletou D, Polkey MI, Moxham J. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease. Thorax 2005;60:718-22. https://doi.org/10.1136/thx.2005.040709
  9. Franssen FM, Broekhuizen R, Janssen PP, Wouters EF, Schols AM. Limb muscle dysfunction in COPD: effects of muscle wasting and exercise training. Med Sci Sports Exerc 2005;37:2-9. https://doi.org/10.1249/01.MSS.0000150082.59155.4F
  10. Engelen MP, Schols AM, Does JD, Wouters EF. Skeletal muscle weakness is associated with wasting of extremity fat-free mass but not with airflow obstruction in patients with chronic obstructive pulmonary disease. Am J Clin Nutr 2000;71:733-8.
  11. Jobin J, Maltais F, Doyon JF, LeBlanc P, Simard PM, Simard AA, et al. Chronic obstructive pulmonary disease: capillarity and fiber-type characteristics of skeletal muscle. J Cardiopulm Rehabil 1998;18:432-7. https://doi.org/10.1097/00008483-199811000-00005
  12. Whittom F, Jobin J, Simard PM, Leblanc P, Simard C, Bernard S, et al. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc 1998;30:1467-74. https://doi.org/10.1097/00005768-199810000-00001
  13. Maltais F, Sullivan MJ, LeBlanc P, Duscha BD, Schachat FH, Simard C, et al. Altered expression of myosin heavy chain in the vastus lateralis muscle in patients with COPD. Eur Respir J 1999;13:850-4. https://doi.org/10.1034/j.1399-3003.1999.13d26.x
  14. Aagaard P, Andersen JL. Correlation between contractile strength and myosin heavy chain isoform composition in human skeletal muscle. Med Sci Sports Exerc 1998;30:1217-22. https://doi.org/10.1097/00005768-199808000-00006
  15. Maltais F, LeBlanc P, Whittom F, Simard C, Marquis K, Belanger M, et al. Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax 2000;55:848-53. https://doi.org/10.1136/thorax.55.10.848
  16. Saey D, Michaud A, Couillard A, Cote CH, Mador MJ, LeBlanc P, et al. Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;171:1109-15. https://doi.org/10.1164/rccm.200408-1005OC
  17. Wegner RE, Jorres RA, Kirsten DK, Magnussen H. Factor analysis of exercise capacity, dyspnoea ratings and lung function in patients with severe COPD. Eur Respir J 1994;7:725-9. https://doi.org/10.1183/09031936.94.07040725
  18. Foglio K, Carone M, Pagani M, Bianchi L, Jones PW, Ambrosino N. Physiological and symptom determinants of exercise performance in patients with chronic airway obstruction. Respir Med 2000;94:256-63. https://doi.org/10.1053/rmed.1999.0734
  19. Killian KJ, Leblanc P, Martin DH, Summers E, Jones NL, Campbell EJ. Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with chronic airflow limitation. Am Rev Respir Dis 1992;146:935-40. https://doi.org/10.1164/ajrccm/146.4.935
  20. O'Donnell DE, Revill SM, Webb KA. Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;164:770-7. https://doi.org/10.1164/ajrccm.164.5.2012122
  21. Decramer M, Gosselink R, Troosters T, Verschueren M, Evers G. Muscle weakness is related to utilization of health care resources in COPD patients. Eur Respir J 1997;10:417-23. https://doi.org/10.1183/09031936.97.10020417
  22. Marquis K, Debigare R, Lacasse Y, LeBlanc P, Jobin J, Carrier G, et al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;166:809-13. https://doi.org/10.1164/rccm.2107031
  23. Swallow EB, Reyes D, Hopkinson NS, Man WD, Porcher R, Cetti EJ, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax 2007;62:115-20. https://doi.org/10.1136/thx.2006.062026
  24. Levine S, Nguyen T, Kaiser LR, Rubinstein NA, Maislin G, Gregory C, et al. Human diaphragm remodeling associated with chronic obstructive pulmonary disease: clinical implications. Am J Respir Crit Care Med 2003;168:706-13. https://doi.org/10.1164/rccm.200209-1070OC
  25. Levine S, Gregory C, Nguyen T, Shrager J, Kaiser L, Rubinstein N, et al. Bioenergetic adaptation of individual human diaphragmatic myofibers to severe COPD. J Appl Physiol 2002;92:1205-13. https://doi.org/10.1152/japplphysiol.00116.2001
  26. Levine S, Kaiser L, Leferovich J, Tikunov B. Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med 1997;337:1799-806. https://doi.org/10.1056/NEJM199712183372503
  27. Orozco-Levi M, Gea J, Lloreta JL, Felez M, Minguella J, Serrano S, et al. Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease. Eur Respir J 1999;13:371-8. https://doi.org/10.1183/09031936.99.13237199
  28. Ottenheijm CA, Heunks LM, Sieck GC, Zhan WZ, Jansen SM, Degens H, et al. Diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;172:200-5. https://doi.org/10.1164/rccm.200502-262OC
  29. Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas JM, Gea J. Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;164:1734-9. https://doi.org/10.1164/ajrccm.164.9.2011150
  30. Levine S, Nguyen T, Friscia M, Zhu J, Szeto W, Kucharczuk JC, et al. Parasternal intercostal muscle remodeling in severe chronic obstructive pulmonary disease. J Appl Physiol 2006;101:1297-302. https://doi.org/10.1152/japplphysiol.01607.2005
  31. Bloomfield SA. Changes in musculoskeletal structure and function with prolonged bed rest. Med Sci Sports Exerc 1997;29:197-206.
  32. Tesch PA, Berg HE, Haggmark T, Ohlsen H, Dudley GA. Muscle strength and endurance following lowerlimb suspension in man. Physiologist 1991;34:S104-6.
  33. Lawler JM, Song W, Demaree SR. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 2003;35:9-16. https://doi.org/10.1016/S0891-5849(03)00186-2
  34. Ries AL, Bauldoff GS, Carlin BW, Casaburi R, Emery CF, Mahler DA, et al. Pulmonary Rehabilitation: Joint ACCP/AACVPR Evidence-Based Clinical Practice Guidelines. Chest 2007;131:4S-42S. https://doi.org/10.1378/chest.06-2418
  35. Paddon-Jones D, Sheffield-Moore M, Cree MG, Hewlings SJ, Aarsland A, Wolfe RR, et al. Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab 2006;91:4836-41. https://doi.org/10.1210/jc.2006-0651
  36. Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PW. Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol 1995;78:2033-8. https://doi.org/10.1152/jappl.1995.78.6.2033
  37. Couillard A, Koechlin C, Cristol JP, Varray A, Prefaut C. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients. Eur Respir J 2002;20:1123-9. https://doi.org/10.1183/09031936.02.00014302
  38. Coronell C, Orozco-Levi M, Mendez R, Ramirez-Sarmiento A, Galdiz JB, Gea J. Relevance of assessing quadriceps endurance in patients with COPD. Eur Respir J 2004;24:129-36. https://doi.org/10.1183/09031936.04.00079603
  39. Gosker HR, Lencer NH, Franssen FM, van der Vusse GJ, Wouters EF, Schols AM. Striking similarities in systemic factors contributing to decreased exercise capacity in patients with severe chronic heart failure or COPD. Chest 2003;123:1416-24. https://doi.org/10.1378/chest.123.5.1416
  40. Couillard A, Prefaut C. From muscle disuse to myopathy in COPD: potential contribution of oxidative stress. Eur Respir J 2005;26:703-19. https://doi.org/10.1183/09031936.05.00139904
  41. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax 2004;59:574-80. https://doi.org/10.1136/thx.2003.019588
  42. Li YP, Lecker SH, Chen Y, Waddell ID, Goldberg AL, Reid MB. TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 2003;17:1048-57. https://doi.org/10.1096/fj.02-0759com
  43. Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB. Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J 1998;12:871-80. https://doi.org/10.1096/fasebj.12.10.871
  44. Langen RC, Van Der Velden JL, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM. Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB J 2004;18:227-37. https://doi.org/10.1096/fj.03-0251com
  45. Janssen SP, Gayan-Ramirez G, Van den Bergh A, Herijgers P, Maes K, Verbeken E, et al. Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats. Circulation 2005;111:996-1005. https://doi.org/10.1161/01.CIR.0000156469.96135.0D
  46. Yende S, Waterer GW, Tolley EA, Newman AB, Bauer DC, Taaffe DR, et al. Inflammatory markers are associated with ventilatory limitation and muscle dysfunction in obstructive lung disease in well functioning elderly subjects. Thorax 2006;61:10-6.
  47. Pinto-Plata VM, Mullerova H, Toso JF, Feudjo-Tepie M, Soriano JB, Vessey RS, et al. C-reactive protein in patients with COPD, control smokers and non-smokers. Thorax 2006;61:23-8.
  48. Broekhuizen R, Wouters EF, Creutzberg EC, Schols AM. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax 2006;61:17-22.
  49. Barreiro E, Schols AM, Polkey MI, Galdiz JB, Gosker HR, Swallow EB, et al. Cytokine profile in quadriceps muscles of patients with severe COPD. Thorax 2008;63:100-7.
  50. Crul T, Spruit MA, Gayan-Ramirez G, Quarck R, Gosselink R, Troosters T, et al. Markers of inflammation and disuse in vastus lateralis of chronic obstructive pulmonary disease patients. Eur J Clin Invest 2007;37:897-904. https://doi.org/10.1111/j.1365-2362.2007.01867.x
  51. Petersen AM, Penkowa M, Iversen M, Frydelund- Larsen L, Andersen JL, Mortensen J, et al. Elevated levels of IL-18 in plasma and skeletal muscle in chronic obstructive pulmonary disease. Lung 2007;185:161-71. https://doi.org/10.1007/s00408-007-9000-7
  52. Casadevall C, Coronell C, Ramirez-Sarmiento AL, Martínez-Llorens J, Barreiro E, Orozco-Levi M, et al. Upregulation of pro-inflammatory cytokines in the intercostal muscles of COPD patients. Eur Respir J 2007;30:701-7. https://doi.org/10.1183/09031936.00152005
  53. van der Poll T, Romijn JA, Endert E, Sauerwein HP. Effects of tumor necrosis factor on the hypothalamic-pituitary-testicular axis in healthy men. Metabolism 1993;42:303-7. https://doi.org/10.1016/0026-0495(93)90078-3
  54. Van Vliet M, Spruit MA, Verleden G, Kasran A, Van Herck E, Pitta F, et al. Hypogonadism, quadriceps weakness, and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;172:1105-11. https://doi.org/10.1164/rccm.200501-114OC
  55. Repine JE, Bast A, Lankhorst I. Oxidative stress in chronic obstructive pulmonary disease: Oxidative Stress Study Group. Am J Respir Crit Care Med 1997;156:341-57. https://doi.org/10.1164/ajrccm.156.2.9611013
  56. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  57. Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 1997;324(Pt 1):1-18. https://doi.org/10.1042/bj3240001
  58. Barreiro E, de la Puente B, Minguella J, Corominas JM, Serrano S, Hussain SN, et al. Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;171:1116-24. https://doi.org/10.1164/rccm.200407-887OC
  59. Barreiro E, Gea J, Di Falco M, Kriazhev L, James S, Hussain SN. Protein carbonyl formation in the diaphragm. Am J Respir Cell Mol Biol 2005;32:9-17. https://doi.org/10.1165/rcmb.2004-0021OC
  60. Allaire J, Maltais F, LeBlanc P, Simard PM, Whittom F, Doyon JF, et al. Lipofuscin accumulation in the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Muscle Nerve 2002;25:383-9. https://doi.org/10.1002/mus.10039
  61. Couillard A, Maltais F, Saey D, Debigare R, Michaud A, Koechlin C, et al. Exercise-induced quadriceps oxidative stress and peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003;167:1664-9. https://doi.org/10.1164/rccm.200209-1028OC
  62. Rabinovich RA, Ardite E, Troosters T, Carbo N, Alonso J, Gonzalez de Suso JM, et al. Reduced muscle redox capacity after endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;164:1114-8. https://doi.org/10.1164/ajrccm.164.7.2103065
  63. Engelen MP, Schols AM, Does JD, Deutz NE, Wouters EF. Altered glutamate metabolism is associated with reduced muscle glutathione levels in patients with emphysema. Am J Respir Crit Care Med 2000;161:98-103. https://doi.org/10.1164/ajrccm.161.1.9901031
  64. Andrade FH, Reid MB, Allen DG, Westerblad H. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 1998;509(Pt 2):565-75. https://doi.org/10.1111/j.1469-7793.1998.565bn.x
  65. Barclay JK, Hansel M. Free radicals may contribute to oxidative skeletal muscle fatigue. Can J Physiol Pharmacol 1991;69:279-84. https://doi.org/10.1139/y91-043
  66. Buck M, Chojkier M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J 1996;15:1753-65.
  67. Langen RC, Schols AM, Kelders MC, Van Der Velden JL, Wouters EF, Janssen-Heininger YM. Tumor necrosis factor-alpha inhibits myogenesis through redox-dependent and -independent pathways. Am J Physiol Cell Physiol 2002;283:C714-21. https://doi.org/10.1152/ajpcell.00418.2001
  68. Koechlin C, Couillard A, Simar D, Cristol JP, Bellet H, Hayot M, et al. Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med 2004;169:1022-7. https://doi.org/10.1164/rccm.200310-1465OC
  69. Sandri M. Apoptotic signaling in skeletal muscle fibers during atrophy. Curr Opin Clin Nutr Metab Care 2002;5:249-53. https://doi.org/10.1097/00075197-200205000-00003
  70. Degens H, Swisher AK, Heijdra YF, Siu PM, Dekhuijzen PN, Alway SE. Apoptosis and Id2 expression in diaphragm and soleus muscle from the emphysematous hamster. Am J Physiol Regul Integr Comp Physiol 2007;293:R135-44. https://doi.org/10.1152/ajpregu.00046.2007
  71. Agusti AG, Sauleda J, Miralles C, Gomez C, Togores B, Sala E, et al. Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;166:485-9. https://doi.org/10.1164/rccm.2108013
  72. Cao PR, Kim HJ, Lecker SH. Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol 2005;37:2088-97. https://doi.org/10.1016/j.biocel.2004.11.010
  73. Attaix D, Ventadour S, Codran A, Bechet D, Taillandier D, Combaret L. The ubiquitin-proteasome system and skeletal muscle wasting. Essays Biochem 2005;41:173-86. https://doi.org/10.1042/EB0410173
  74. Klaude M, Fredriksson K, Tader I, Hammarqvist F, Ahlman B, Rooyackers O, et al. Proteasome proteolytic activity in skeletal muscle is increased in patients with sepsis. Clin Sci (Lond) 2007;112:499-506. https://doi.org/10.1042/CS20060265
  75. Baracos VE, DeVivo C, Hoyle DH, Goldberg AL. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am J Physiol 1995;268:E996-1006.
  76. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004;117:399-412. https://doi.org/10.1016/S0092-8674(04)00400-3
  77. Ottenheijm CA, Heunks LM, Li YP, Jin B, Minnaard R, van Hees HW, et al. Activation of the ubiquitinproteasome pathway in the diaphragm in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006;174:997-1002. https://doi.org/10.1164/rccm.200605-721OC
  78. Schols AM, Soeters PB, Dingemans AM, Mostert R, Frantzen PJ, Wouters EF. Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am Rev Respir Dis 1993;147:1151-6. https://doi.org/10.1164/ajrccm/147.5.1151
  79. Landbo C, Prescott E, Lange P, Vestbo J, Almdal TP. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999;160:1856-61. https://doi.org/10.1164/ajrccm.160.6.9902115
  80. Prescott E, Almdal T, Mikkelsen KL, Tofteng CL, Vestbo J, Lange P. Prognostic value of weight change in chronic obstructive pulmonary disease: results from the Copenhagen City Heart Study. Eur Respir J 2002;20:539-44. https://doi.org/10.1183/09031936.02.00532002
  81. McLoughlin DM, Spargo E, Wassif WS, Newham DJ, Peters TJ, Lantos PL, et al. Structural and functional changes in skeletal muscle in anorexia nervosa. Acta Neuropathol 1998;95:632-40. https://doi.org/10.1007/s004010050850
  82. Vermeeren MA, Schols AM, Wouters EF. Effects of an acute exacerbation on nutritional and metabolic profile of patients with COPD. Eur Respir J 1997;10:2264-9. https://doi.org/10.1183/09031936.97.10102264
  83. Baarends EM, Schols AM, Westerterp KR, Wouters EF. Total daily energy expenditure relative to resting energy expenditure in clinically stable patients with COPD. Thorax 1997;52:780-5. https://doi.org/10.1136/thx.52.9.780
  84. Ferreira IM, Brooks D, Lacasse Y, Goldstein RS. Nutritional support for individuals with COPD: a meta-analysis. Chest 2000;117:672-8. https://doi.org/10.1378/chest.117.3.672
  85. Decramer M, Lacquet LM, Fagard R, Rogiers P. Corticosteroids contribute to muscle weakness in chronic airflow obstruction. Am J Respir Crit Care Med 1994;150:11-6. https://doi.org/10.1164/ajrccm.150.1.8025735
  86. Decramer M, de Bock V, Dom R. Functional and histologic picture of steroid-induced myopathy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996;153:1958-64. https://doi.org/10.1164/ajrccm.153.6.8665061
  87. Menconi M, Fareed M, O'Neal P, Poylin V, Wei W, Hasselgren PO. Role of glucocorticoids in the molecular regulation of muscle wasting. Crit Care Med 2007;35:S602-8. https://doi.org/10.1097/01.CCM.0000279194.11328.77
  88. Kamischke A, Kemper DE, Castel MA, Luthke M, Rolf C, Behre HM, et al. Testosterone levels in men with chronic obstructive pulmonary disease with or without glucocorticoid therapy. Eur Respir J 1998;11:41-5. https://doi.org/10.1183/09031936.98.11010041
  89. Ishihara A, Itoh K, Oishi Y, Itoh M, Hirofuji C, Hayashi H. Effects of hypobaric hypoxia on histochemical fibre-type composition and myosin heavy chain isoform component in the rat soleus muscle. Pflugers Arch 1995;429:601-6. https://doi.org/10.1007/BF00373980
  90. Howald H, Pette D, Simoneau JA, Uber A, Hoppeler H, Cerretelli P. Effect of chronic hypoxia on muscle enzyme activities. Int J Sports Med 1990;11 Suppl 1:S10-4. https://doi.org/10.1055/s-2007-1024847
  91. Jakobsson P, Jorfeldt L, Brundin A. Skeletal muscle metabolites and fibre types in patients with advanced chronic obstructive pulmonary disease (COPD), with and without chronic respiratory failure. Eur Respir J 1990;3:192-6.
  92. Koechlin C, Maltais F, Saey D, Michaud A, LeBlanc P, Hayot M, et al. Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease. Thorax 2005;60:834-41. https://doi.org/10.1136/thx.2004.037531
  93. Takabatake N, Nakamura H, Abe S, Inoue S, Hino T, Saito H, et al. The relationship between chronic hypoxemia and activation of the tumor necrosis factor-alpha system in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000;161:1179-84. https://doi.org/10.1164/ajrccm.161.4.9903022
  94. Semple PD, Beastall GH, Watson WS, Hume R. Serum testosterone depression associated with hypoxia in respiratory failure. Clin Sci (Lond) 1980;58:105-6. https://doi.org/10.1042/cs0580105
  95. Montes de Oca M, Loeb E, Torres SH, De Sanctis J, Hernandez N, Talamo C. Peripheral muscle alterations in non-COPD smokers. Chest 2008;133:13-8. https://doi.org/10.1378/chest.07-1592
  96. Petersen AM, Magkos F, Atherton P, Selby A, Smith K, Rennie MJ, et al. Smoking impairs muscle protein synthesis and increases the expression of myostatin and MAFbx in muscle. Am J Physiol Endocrinol Metab 2007;293:E843-8. https://doi.org/10.1152/ajpendo.00301.2007
  97. Hopkinson NS, Tennant RC, Dayer MJ, Swallow EB, Hansel TT, Moxham J, et al. A prospective study of decline in fat free mass and skeletal muscle strength in chronic obstructive pulmonary disease. Respir Res 2007;8:25. https://doi.org/10.1186/1465-9921-8-25
  98. Young A, Stokes M, Crowe M. The size and strength of the quadriceps muscles of old and young men. Clin Physiol 1985;5:145-54. https://doi.org/10.1111/j.1475-097X.1985.tb00590.x
  99. Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 1979;46:451-6. https://doi.org/10.1152/jappl.1979.46.3.451
  100. Tolep K, Higgins N, Muza S, Criner G, Kelsen SG. Comparison of diaphragm strength between healthy adult elderly and young men. Am J Respir Crit Care Med 1995;152:677-82. https://doi.org/10.1164/ajrccm.152.2.7633725
  101. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984;56:831-8. https://doi.org/10.1152/jappl.1984.56.4.831
  102. Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 2002;29:218-22. https://doi.org/10.1046/j.1440-1681.2002.03623.x
  103. Mador MJ, Kufel TJ, Pineda LA, Steinwald A, Aggarwal A, Upadhyay AM, et al. Effect of pulmonary rehabilitation on quadriceps fatiguability during exercise. Am J Respir Crit Care Med 2001;163:930-5. https://doi.org/10.1164/ajrccm.163.4.2006125
  104. Maltais F, LeBlanc P, Simard C, Jobin J, Berube C, Bruneau J, et al. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996;154:442-7. https://doi.org/10.1164/ajrccm.154.2.8756820
  105. Leggett RJ, Flenley DC. Portable oxygen and exercise tolerance in patients with chronic hypoxic cor pulmonale. Br Med J 1977;2:84-6. https://doi.org/10.1136/bmj.2.6079.84
  106. Payen JF, Wuyam B, Levy P, Reutenauer H, Stieglitz P, Paramelle B, et al. Muscular metabolism during oxygen supplementation in patients with chronic hypoxemia. Am Rev Respir Dis 1993;147:592-8. https://doi.org/10.1164/ajrccm/147.3.592
  107. Mannix ET, Boska MD, Galassetti P, Burton G, Manfredi F, Farber MO. Modulation of ATP production by oxygen in obstructive lung disease as assessed by 31P-MRS. J Appl Physiol 1995;78:2218-27. https://doi.org/10.1152/jappl.1995.78.6.2218
  108. Ferreira IM, Brooks D, Lacasse Y, Goldstein RS, White J. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2002;(1):CD000998.
  109. Cuneo RC, Salomon F, Wiles CM, Hesp R, Sonksen PH. Growth hormone treatment in growth hormone-deficient adults: II. Effects on exercise performance. J Appl Physiol 1991;70:695-700. https://doi.org/10.1152/jappl.1991.70.2.695
  110. Pape GS, Friedman M, Underwood LE, Clemmons DR. The effect of growth hormone on weight gain and pulmonary function in patients with chronic obstructive lung disease. Chest 1991;99:1495-500. https://doi.org/10.1378/chest.99.6.1495
  111. Burdet L, de Muralt B, Schutz Y, Pichard C, Fitting JW. Administration of growth hormone to underweight patients with chronic obstructive pulmonary disease: a prospective, randomized, controlled study. Am J Respir Crit Care Med 1997;156:1800-6. https://doi.org/10.1164/ajrccm.156.6.9704142
  112. Urban RJ, Bodenburg YH, Gilkison C, Foxworth J, Coggan AR, Wolfe RR, et al. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol 1995;269:E820-6.
  113. Schols AM, Soeters PB, Mostert R, Pluymers RJ, Wouters EF. Physiologic effects of nutritional support and anabolic steroids in patients with chronic obstructive pulmonary disease: a placebo-controlled randomized trial. Am J Respir Crit Care Med 1995;152:1268-74. https://doi.org/10.1164/ajrccm.152.4.7551381
  114. Creutzberg EC, Wouters EF, Mostert R, Pluymers RJ, Schols AM. A role for anabolic steroids in the rehabilitation of patients with COPD? A double-blind, placebo-controlled, randomized trial. Chest 2003;124:1733-42. https://doi.org/10.1378/chest.124.5.1733
  115. Ferreira IM, Verreschi IT, Nery LE, Goldstein RS, Zamel N, Brooks D, et al. The influence of 6 months of oral anabolic steroids on body mass and respiratory muscles in undernourished COPD patients. Chest 1998;114:19-28. https://doi.org/10.1378/chest.114.1.19
  116. Ryall JG, Gregorevic P, Plant DR, Sillence MN, Lynch GS. Beta 2-agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol. Am J Physiol Regul Integr Comp Physiol 2002;283:R1386-94. https://doi.org/10.1152/ajpregu.00324.2002
  117. Hinkle RT, Hodge KM, Cody DB, Sheldon RJ, Kobilka BK, Isfort RJ. Skeletal muscle hypertrophy and anti-atrophy effects of clenbuterol are mediated by the beta2-adrenergic receptor. Muscle Nerve 2002;25:729-34. https://doi.org/10.1002/mus.10092
  118. Hinkle RT, Dolan E, Cody DB, Bauer MB, Isfort RJ. Phosphodiesterase 4 inhibition reduces skeletal muscle atrophy. Muscle Nerve 2005;32:775-81. https://doi.org/10.1002/mus.20416
  119. Sanders PM, Russell ST, Tisdale MJ. Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia. Br J Cancer 2005;93:425-34. https://doi.org/10.1038/sj.bjc.6602725
  120. Brink M, Price SR, Chrast J, Bailey JL, Anwar A, Mitch WE, et al. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 2001;142:1489-96. https://doi.org/10.1210/en.142.4.1489
  121. Adigun AQ, Ajayi AA. The effects of enalapril-digoxin-diuretic combination therapy on nutritional and anthropometric indices in chronic congestive heart failure: preliminary findings in cardiac cachexia. Eur J Heart Fail 2001;3:359-63. https://doi.org/10.1016/S1388-9842(00)00146-X
  122. Mulligan K, Schambelan M. Anabolic treatment with GH, IGF-I, or anabolic steroids in patients with HIVassociated wasting. Int J Cardiol 2002;85:151-9. https://doi.org/10.1016/S0167-5273(02)00247-4
  123. Engelen MP, Schols AM. Altered amino acid metabolism in chronic obstructive pulmonary disease: new therapeutic perspective? Curr Opin Clin Nutr Metab Care 2003;6:73-8. https://doi.org/10.1097/00075197-200301000-00011
  124. Appell HJ, Duarte JA, Soares JM. Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Int J Sports Med 1997;18:157-60. https://doi.org/10.1055/s-2007-972612
  125. Agacdiken A, Basyigit I, Ozden M, Yildiz F, Ural D, Maral H, et al. The effects of antioxidants on exercise-induced lipid peroxidation in patients with COPD. Respirology 2004;9:38-42. https://doi.org/10.1111/j.1440-1843.2003.00526.x

Cited by

  1. Association between CT-Measured Abdominal Skeletal Muscle Mass and Pulmonary Function vol.8, pp.5, 2019, https://doi.org/10.3390/jcm8050667
  2. Sabinene Prevents Skeletal Muscle Atrophy by Inhibiting the MAPK-MuRF-1 Pathway in Rats vol.20, pp.19, 2010, https://doi.org/10.3390/ijms20194955
  3. Association Between the Predictors of Functional Capacity and Heart Rate Off-Kinetics in Patients with Chronic Obstructive Pulmonary Disease vol.15, pp.None, 2010, https://doi.org/10.2147/copd.s260284
  4. A systematic review and meta-analysis of the effectiveness of virtual reality as an exercise intervention for individuals with a respiratory condition vol.5, pp.1, 2020, https://doi.org/10.1186/s41077-020-00151-z